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1. Introduction 
The goal of our work was to create autonomous agents that worked in a domain of constrained 
resources and that used case-based negotiation to allocate resources in a good-enough soon-
enough manner.  The sponsor elected the domain of application to be distributed sensor 
management for multi-target tracking.  We developed two separate but similar formalisms for the 
implementation of the negotiation agents: first, a real-time architecture based on the Belief-
Desire-Intention (BDI) agent framework, and second, a near real-time architecture that relied on 
domain heuristics.  Both architectures are described in the rest of this document. 
 
In addition to this main thrust of our work, we were also tasked to provide tools for analyzing the 
performance of Java code, real-time Linux services, a Communication Server to model the RF 
communication channels of the sensors, and for studying and improving the Challenge Problem 
code. 
 
2. Real-Time, Case-Based Negotiating Agents using BDI 
While negotiation has been used in the past in problem solving in multiagent systems, in our 
work we concentrate on negotiations and activities that must occur in real time.  The introduction 
of hard real time in negotiation and action execution complicates the problem greatly, and 
existing negotiation protocols cannot provide an adequate solution. In this report we describe a 
real-time negotiation model that is used in resource allocation problems.  As an example domain 
we use multi-sensor target tracking, where each agent controls a sensor with a limited sensing 
coverage area.  As a target moves across space, agents have to cooperate to track it.  Each agent 
(together with the sensor it controls) consumes resources such as time, battery power, bandwidth 
of the communication channel, and some percentage of the CPU where the agent resides, and 
each agent strives to manage and utilize its resources efficiently and effectively.  This motivates 
the agents to share their knowledge about a problem based on their viewpoints in their effort of 
arriving at a solution.  The problem of global resource allocation becomes a problem of locally 
negotiated compromises and local constraint satisfaction.   
 
We developed a logical negotiation protocol that incorporates a real-time BDI model (Rao & 
Georgeff, 1991, 1995) to dictate the rules of encounter among our autonomous agents.  A feature 
of our problem involves generating a “good-enough, soon-enough” solution1 to resource 
allocation.  Since time is critical—for example, to make a good triangulation for the location of a 
target, three different sensors have to make a measurement within 2 seconds of each other—
agents use time to guide their negotiation behavior.  We base our temporal model on (Allen 
1983) in which logical events or propositions can be ordered consistently along a timeline and 
durations of events or propositions holding true can be derived from their relationships with 
others.  This temporal logic allows us to define explicitly the transition of a BDI state to another, 
including causality and co-existence.  Equipped with the definition of time, we are able to model 
our negotiation activity with more accuracy, spelling out how and when a state changes and how 
and when it changes with other states, such as state 1s  triggers state 2s , 1s  has to occur before 

2s , 1s  must hold true for some time during which 2s  must hold true as well, and so on.  
Therefore, states may change their truth values during a reasoning process as long as the states 
are needed to hold constant during that time period releasing other states to be updated or 

                                                 
1 A “good-enough, soon-enough” solution is sometimes known as a “satisficing” one—a solution 
that satisfies the minimum problem requirements and the time constraints. 
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changed by other events or states.  This is critical in our agent design as each agent is multi-
threaded, meaning that several threads may attempt to access and modify the same variable 
(state) at the same time.  To maintain data integrity, when a thread is accessing or modifying a 
variable, other threads will be blocked, and this is the common approach.  However, software 
designers must find out how and for how long the threads will be blocked; and this information 
is very important in a real-time system like ours.  With the temporal logic, we know for how 
long threads will be blocked and how these threads will be blocked awaiting which variables 
(states) to become accessible.  This allows us to fine-tune the system to increase the efficiency of 
the negotiation process.  Further, by incorporating temporal logic and BDI models into our 
negotiation protocol, we can guarantee both logically and temporally the completion of a 
negotiation.  We know what states are needed (and when they are needed) for a negotiation to 
logically complete, and we also can model the time distribution or usage needed for each step of 
the negotiation to complete within certain time constraints.  Note that temporal components have 
been in place in the BDI model (Rao and Georgeff 1991, Cohen and Levesque 1990) to 
determine how the three modalities are related over time.  For example, taking time into 
consideration allows one to have persistent intentions, inevitable outcomes, and so on.  In our 
model, we use the temporal logic to control the stability of a state, which in turn facilitates our 
multi-threaded solution. 
 
We further define two sets of communicative acts—one for handling incoming messages and one 
for handling outgoing messages.  A communicative act that handles incoming messages is a 
function that turns an event (the arrival of a message) to a set of BDI states.  The function parses 
the incoming message and generates states that are necessary for the agent reasoning during a 
negotiation process.  Similarly, a communicative act that handles outgoing messages is a 
function that composes a message based on the agent’s current BDI states and sends it out via a 
communication channel.  We qualify these acts with temporal logic and incorporate them into 
the negotiation protocol.  In addition to the communicative acts, we utilize a suite of real-time 
enabling functional predicates to assist agents in negotiations.  These predicates are events that 
take time to execute and they also generate or modify states.   
 
Since each agent is autonomous and reacts to its environment, each has its own knowledge base 
and its own monitoring of the world events, including its sensor, its neighbors, and the targets.  
To increase the fault tolerance of the multi-agent system, each agent is responsible only for the 
resources it controls (in our example domain, its sensor and associated components), and it 
controls the minimal set of resources it requires to achieve its task.  In our work agents have 
minimal knowledge and information—they know how to perform their tasks, have a local, 
limited view of the world provided to them by the equipment they control, and know of the 
existence of other similar agents, but they do not have an explicit view of the information of the 
other agents.  There is some implicit knowledge, namely that the other agents control a set of 
resources, that they are willing to cooperate, that they are capable of negotiation for resource 
sharing, and that they are truthful.  To establish a common reasoning basis during a collaborative 
effort, an agent is required to communicate to its potential partner why it needs to share the 
resources controlled by the partner.  This knowledge exchange can be done via different 
mechanisms such as a blackboard where agents post information on a common site, or auctions 
where a contractor-agent oversees the message passing among contractee-agents, or through 
agent-based negotiations where agents exchange information directly.  In our approach, we use 
negotiations motivated by a global goal—to track as many targets as accurately as possible—
guided by a set of local optimization criteria that affect the strategies.  During a negotiation 
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agents exchange information of their individual viewpoints of the current (and relevant) world 
situation.  In this manner, the agents are able to argue and attempt to persuade each other 
explicitly, resulting in efficient knowledge transfer.  We thus do away with a centralized 
information facility that requires constant updates and polling from agents, and, instead, 
knowledge is exchanged when necessary resulting in less communication traffic.  Knowledge 
inconsistencies are resolved in a task-driven manner, making knowledge management easier. 
 
One important part of the negotiation process is the determination of the negotiation strategy 
based on the current task description.  To do so, we use a model derived from case-based 
reasoning (CBR) (Kolodner 1993) that is time-constrained and that retrieves the most similar 
cases, selects the best case based on utility theory, adapts the case to the current situation, and 
then uses the case’s negotiation strategy to perform negotiations.  The CBR approach limits the 
time needed to decide on a negotiation strategy—selection (through retrieval) and generation 
(through adaptation) of a situation-appropriate strategy—and enables the agent to learn 
autonomously and adapt itself to different scenarios in the domain.  

2.1.  Agent Characteristics 
Each agent has the following characteristics: 

(1) Autonomous – Each agent runs without interaction with human users.  It maintains its own 
knowledge base, makes its own decisions, and interacts with its sensor, neighbors and 
environment.  

(2) Rational – Each agent is rational in that it knows what its goals are and can reason and 
choose from a set of options and make an advantageous decision to achieve its goal 
(Wooldridge and Jennings 1995).  

(3) Communicative – Each agent is able to communicate with others, by initiating and 
responding to messages, and carrying out conversations. 

(4) Reflective (or Aware) – According to Brazier and Treur (1996), a reflective agent reasons 
based on its own observations, its own information state and assumptions, its communication 
with another agent and another agent’s reasoning, and its own control or reasoning and 
actions.  By being reflective, each agent is time aware and situationally aware.  When an 
agent is time aware, it observes time in its decision making and actions.  Its reasoning takes 
time into account, and thus, the outcome of a reasoning process is partially dependent on 
time.  When an agent is situationally aware, it observes its current situation, the situation of 
its neighbors, and that of the world and makes decisions based on these observations.  In 
general, an agent that is situationally aware observes the resources that it shares with other 
agents, its current tasks, messages, profiles and actions of its neighbors, and the external 
changes in the environment.  In our work we require a stronger level of situational 
awareness.  An agent also observes its own resources that sustain the being of the agent.  For 
a hardware agent, these resources may be the battery power, the radio frequency links, etc.  
For a software agent, these resources may be CPU, RAM, disk space, communication 
channels, etc.  Note that, for example, in (Sandholm & Lesser 1995), a bounded rationality 
model is used where each agent has to pay for the computational resources (CPU cycles) that 
it uses for deliberation, assuming that the resources are available.  In our model, however, we 
require an agent to be aware of whether the resources are available before even starting a 
negotiation. 

(5) Honest – Each agent does not knowingly lie or intentionally give false information.  This 
characteristic is also known as veracity (Galliers 1988). 
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(6) Adaptive – Each agent is able to adapt to changes in the environment and learns to perform a 
task better, not only reactively but also from its past experience. 

(7) Cooperative – Each agent is motivated to cooperate if possible with its neighbors to achieve 
global goals while satisfying local constraints. 

 
Generally, the agents in a multi-agent system may be controlling different resources and use 
different reasoning and negotiation techniques.  In our approach, we require (1) that all agents be 
capable of negotiation in which they share a common vocabulary that enables message 
understanding, and (2) that each agent knows what resources may be used or controlled by a 
non-empty subset of the other agents in the environment so that it can determine whom to 
negotiate with.  In our particular domain of application, each agent controls the same resources, 
since each one controls the same type of sensor.  Also, each agent uses the same negotiation 
methodology based on case-based reasoning, but the individual case bases differ.   
 
Formally, our multi-agent system architecture is defined as follows.  Suppose that we denote a 
multi-agent system as Ω.  Suppose that we define a neighborhood of an agent iα , 

iαΨ , such that 
Ω⊆Ψ

iα , ∅≠Ψ
iα , and that the agent iα  knows about all other agents in the neighborhood.  

Thus, we have ( )jiji j
i

ααλαα α ,,, ∀Ψ∈  where ( )ba,λ  means agent a knows about the existence of 
agent b and can communicate with agent b.  A neighborhood is different from a team as defined 
in (Tambe, 1997), which is task-driven and formed among a set of agents to accomplish a task.  
A neighborhood is a subset of agents of the multiagent system that could form a team.  In our 
particular domain of application (multisensor target tracking), a neighborhood consists of a set of 
agents that control sensors that are physically close and whose sensing beams overlap. So, in our 
multi-agent system Ω, there is a set of neighborhoods, { }

Nααα ΨΨΨ=Ω ,,,
21
K , and each 

neighborhood can form any number of teams.  Neighborhoods do not necessarily have the same 
number of members, and neighborhoods may share members. 
 
When a target is sensed, an agent tracks the target, refers to its neighborhood information, and 
dynamically forms a negotiation coalition, that is, a subgroup of its neighborhood agents with 
which it may negotiate to request resources to assist it in its task.  For example, when an agent 
detects a target in its sensing area, the agent immediately obtains an estimate on the position and 
velocity of the target.  It then projects the future positions of the target and identifies the 
neighbors whose sensors are able to cover the target moving in the projected path.  These are 
agents that control resources (i.e. sensor beams) that it needs to track the target, and these are the 
agents that will be part of the negotiation coalition.   

2.2.  A Logical Protocol for Real-Time Argumentative Agent Negotiations 
In this section, we describe the logical protocol for our real-time argumentative agent 
negotiations.  Argumentative negotiations differ from traditional negotiations because the agents 
conducting the former negotiate about why one of the agents needs to perform a certain task in 
addition to what the task is.  Therefore, our work is similar to (Parsons et al. 1998).  However, 
we assume that agents have the same inference rules.  Parsons’ work assumes that agents may 
have different ones, and thus his argumentation protocol requires agents to exchange inference 
rules as well.  Moreover, we incorporate real-time issues into our design guidelines. 
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Figure 1 shows our negotiation protocol in a state diagram between two agents: a and b.  State 0 
is the initial state, the double-circle.  State 1 is the first handshake state, indicating whether the 
initiated negotiation will be entertained.  State 4 is the initiating state while state 5 is the 
responding state.  The initiating state is where the initiating agent, a, returns to, basically the 
processing loop of the negotiator module.  The responding state is where the responding agent, b, 
returns to, respectively.  Agent a initiates a negotiation request to b by sending an INITIATE 
message (initiate(a,b)), the state transitions to 1.  At this juncture, there are four possible 
scenarios.  First, agent b may outright refuse to negotiate by sending a NO_GO message 
(no_go(b,a)).  This results in a final state of failure (state 2, rejected).  Second, agent b may 
outright agree to the requested task by sending an AGREE message (agree(b,a)).  This results in 
a final state of success (state 3).  Third, agent b may decide to entertain the negotiation request 
and thus sends back a RESPOND message (respond(b,a)).  This transitions the state to 4.  
Fourth, there may be no response from agent b.  Thus agent a, after waiting for some time, has 
no choice but to declare a no response (no_response(a)) and moves to a state of failure (state 8, 
channel _jammed).   
 
When the agents move to state 4, the argumentative negotiation begins and iterates between 
states 4 and 5 until one side opts out or both sides opt out or both sides agree.  During the 
negotiation, (1) agent a provides information or arguments to b by sending INFO messages 
(info(a,b)), (2) agent b demands information or arguments from a by sending MORE_INFO 
messages (more_info(b,a)), (3) if agent a runs out of arguments, it sends a INFO_NULL 
message to b (info_null(a,b)), (4) if agent b runs out of patience, it counter-proposes by sending 
a COUNTER message to a (counter(b,a)), and (5) agent a can agree to the counter offer 
(agree(a,b)) and move to the state of success (state 3), or provide more information (info(a,b)) as 
requested, or provide no information (info_null(a,b)) if it has time to do so, hoping that agent b 
might come up with a better offer, or simply disagrees (abort(a,b)).  Thus, an initiating agent will 
always negotiate until it has run out of time or when the responding agent opts out.  However, an 
initiating agent may abort a negotiation, and this is where the conditions come into play.  If the 
agent realizes that it has already obtained what it wants from other negotiations happening in 
parallel, then it aborts the current negotiation; or if the agent realizes that it no longer cares about 
the current negotiation, then it aborts.  These conditions are based on desires and intentions, 
which in turns are based on beliefs of the agent.  When an agent runs out of time, it issues an 
OUT_OF_TIME message to the other agent and quits the negotiation with a failure (state 6, 
out_of_time).  When an agent aborts, it issues an ABORT message to the other agent and quits 
the negotiation with a failure (state 7, abort).  Finally, whenever an agent does not hear from the 
other agent within an allocated time period, it assumes that the communication channel has been 
jammed or congested and quits with a failure (state 8, channel_jammed).  Note that we 
distinguish NO_GO, STOP, OUT_OF_TIME, and ABORT in the above protocol.  With the 
above different end states, agent a can determine whether the negotiation has failed because it 
has exhausted all its arguments (STOP) or otherwise and subsequently learn from the failure. 
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Figure 1  Our negotiation protocol.  Squares are final states.  The double-circle is the initial state. 

 
We use an expanded multi-context BDI agents framework of Parsons et al. (1998), Noriega and 
Sierra (1996) to describe the logical framework of our negotiation protocol.  As presented in Rao 
and Georgeff (1995), there are three modalities.  First, beliefs (B) represent the states of the 
environment and the agent.  There are also belief states that arise during negotiations, as agents 
learn each other’s beliefs and intentions.  Second, desires (D) represent the motivations of the 
agent.  Third, intentions (I) represent the goals that the agent wants to achieve.  We also assume 
the following axioms (Parsons et al. 1998): 
 
1. ( ) ( )( ))(: qBpBqpBB →→→  
2. ( ) ( )pBpBB ¬¬→:     
3. ( ) ( )( )pBBpBB →:   
4. ( ) ( )( )pBBpBB ¬→¬:   
 
Axiom 1 states that if one believes that p implies q, then if one believes p, then one believes q as 
a consequence.  Axiom 2 states that if one believes p, then one does not believe the negation of 
p.  Axiom 3 states that if one believes p, then one also believes that it believes p.  This ensures 
that an agent knows and believes in what it believes.  Similarly, Axiom 4 states that if one does 
not believe p, then one believes that it does not believe p.  Similar axioms for desires and 
intentions are: 
 
5. ( ) ( )( ))(: qDpDqpDD →→→   
6. ( ) ( )pDpDD ¬¬→:     
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7. ( ) ( )( ))(: qIpIqpII →→→   
8. ( ) ( )pIpII ¬¬→:     
 
We adopt the strong realist BDI agent model of Rao and Georgeff (1991) such that (1) an agent 
only intends to do what it desires, and (2) an agent only desires what it believes.  However, we 
do not adopt other rules presented in (Parsons et al. 1998), regarding the communication unit, 
because in our case (1) an intention for performing a task does not necessarily imply a 
communication of the performance of the task—in our domain, a task may sometimes be 
performed by the agent itself, and (2) we do not require an agent to report a completion of a task 
to another agent—because in our current design, an agent assumes that if another agent agrees to 
perform a task, it knows that that agent will try its best to perform and complete the task, and 
that whether it believes the task has been performed is no longer important.  In the future, 
however, we plan to include a monitoring mechanism in an agent to enrich our real-time 
modeling of events and agent behavior in making better decisions.  At that time, an agent would 
have to care whether a task has been performed successfully to update its own belief states, but 
would still not depend on the communicated information for the update. 
 
We incorporate temporal logic into our protocol to explicitly define the various belief, desire, 
and intention states of an agent and when they are true.  This is key to the real-time 
implementation of the protocol.  To satisfy real-time constraints, our agent, as shown in Figure 1, 
consists of multiple concurrent processing threads.  Each thread carries out a set of tasks, and 
these tasks access and modify the same states at different times.  Some states must not be 
modified before certain actions have been carried out; some states should not be accessed before 
certain results have been obtained.  To implement such a state synchronization across multiple 
concurrent processes, we use temporal logic to define when a state must be true and the duration 
for that state to stay true.  Without the temporal logic component, it would have been close to 
intractable to manage the inter-thread, real-time activities.   
 
As previously mentioned, Cohen and Levesque (1990) and Rao and Georgeff (1991) have 
incorporated temporal components into the BDI model.  In Cohen and Levesque (1990), 
intentions are defined in terms of temporal sequences of an agent’s beliefs and goals.  Each 
possible world extendable from a current state at a particular time point is a time line 
representing a sequence of events.  As such, the inter-modal relationships are stronger than those 
in Rao and Georgeff (1991).  For example, an agent fanatically committed to its intentions will 
maintain its goals until either they are believed to be achieved or believed to be unachievable.  
Thus, intentions are seen as a special class of desires.  Rao and Georgeff (1991), on the other 
hand, present an alternative possible-worlds formalism for BDI-architectures.  Instead of a time 
line, they choose to model the world using a temporal structure with a branching time future and 
a single past, called a time tree, where a particular time point in a particular world is called a 
situation.  There are three crucial elements to the formalism.  First, intentions are on a par with 
beliefs and goals.  This allows them to define different strategies of commitment and to model a 
wide variety of agents such as blinded, single-minded, and open-minded agents.  Second, they 
distinguish between the choice an agent has over the actions it can perform and the possibilities 
of different outcomes of an action, factoring in the uncertainty that the environment brings into 
the determination of the outcomes.  Third, they specify an interrelationship between beliefs, 
goals, and intentions that allows them to avoid problems such as commitment to unwanted side 
effects.   
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Compared to our proposed model below, the incorporation of the temporal elements is different.  
In Cohen and Levesque (1990), the temporal component was used to define intentions through 
commitment and persistence, derived from beliefs and goals.  In Rao and Georgeff (1991), it was 
used to order possible worlds from a situation in both the time and space dimensions.  Each time 
tree denotes the optional courses of events choosable by an agent in a particular world.  For 
example, an agent has a belief φ , denoted ( )φB , at time point t if and only if φ  is true in all the 
belief-accessible worlds of the agent at time t.  In our model, however, we use the temporal 
component to define the temporal duration that a state needs to be stable, or needs to occur in 
order for another state to take place.  Thus, our motivation is to help design and implement 
agents that are multi-threaded and multi-tasking.  We do not use temporal logic to define the BDI 
modalities. In the following subsections, we formalize our theory of the actions depicted in the 
state diagram of Figure 1.  
 
To incorporate real-time concerns into our logical negotiation protocol, we use several interval 
relationships outlined in Allen (1983) and Allen and Ferguson (1994).  Each interval t has a start 
time, st , and a finish time, ft , and its duration is sf tt − .   If sf tt − equals the smallest amount 
within the resolution of the domain problem, then the interval becomes a moment or a point.  
There are seven basic relations between temporal intervals: 
1. ( )jiBefore ,  where interval i ends before interval j. 
2. ( )jiMeets ,  where as soon as i finishes, interval j starts, i.e., the two intervals are consecutive.    
3. ( )jiOverlaps ,  where a portion of interval i overlaps a portion of interval j in time and i starts 

before j and i ends before j. 
4. ( )jiStarts ,  where interval i starts at the same time as interval j but interval i has a shorter 

duration. 
5. ( )jiFinishes ,  where interval i finishes at the same time as interval j but interval i has a shorter 

duration. 
6. ( )jiDuring ,  where interval i starts after interval j and interval i ends before interval j. 
7. ( )jiEquals ,  where both intervals have the same durations and start and end at the same times.  
We also adopt the homogeneity axiom schema such that a proposition is homogeneous if and 
only if when it holds over an interval t, it also holds over any sub-interval within t.  Within the 
framework of our negotiation protocol, the BDI states are all homogeneous propositions, hence 
the use of strong negation ¬ .  The predicates such as the communicative acts are anti-
homogeneous (Allen 1991) since, for example, the action of composing and sending a message 
is a process that does not generally hold unless completed in the end.  We also introduce a 
notational convenience [ ]e  as the interval of an event/action, or, in the case of homogeneous 
positions, as the interval of a proposition holding true. 
  
In our protocol, we have two sets of corresponding communicative acts.  One is for receiving 
and parsing an incoming message; the other for composing and sending an outgoing message.  
For example, a communicative act that composes a negotiation request and initiates contact with 
a potential negotiation partner is of the following form: 
 

( )( )trDoriinitiateCout ,,,,: ρ  
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where the predicate initiate is the communicative act (composing and sending), i is the initiating 
agent, r is the responding agent, ( )ρ,rDo  is the requested task, i.e., “r do task ρ ,” and t is the 
time taken for the communicative act to start and finish.   
 
A communicative act is an event that performs a set of tasks consecutively such that the sum of 
the durations of the tasks is the duration of the communicative act.  A communicative act may 
generate new propositions, may cause a new state externally to another agent, and may be 
terminated by another proposition or event.  For example, at the end of the interval t, if the 
communication is successful, then the responding agent will receive the request, 

( )( )krDoriinitiateCin ,,,,: ρ , where, in theory, ( )ktMeets , , and in practice (due to communication 
latency), ( )ktBefore , . On the other hand, if the communication is unsuccessful (e.g., due to 
communication channel being jammed), then the predicate initiate of the initiating agent will be 
terminated by a terminator (Vere 1983).  To simplify our discussions, we use 

( )trequestreceiversenderfCin ,,,:  and ( )trequestreceiversenderfCout ,,,:  to differentiate 
between incoming and outgoing message handling, where f is one of the acts defined in our 
protocol.  Currently, we have the following communicative acts, as depicted in Figure 2: initiate, 
respond, no_go, agree, abort, out_of_time, counter, more_info, info, info_null, and stop, for a 
total of 22. 
 
One of the objects generated by a outC  communicative act is the message.  Our message syntax is 

( )contentsrequesttypereceiversendermsg ,,,,  where the type of the message denotes one of the 
communicative acts and the contents consist of whatever pertinent to the request.  In the 
following discussion, we often mention the messages in the same breath as the communicative 
acts and use them interchangeably.   
 
Vere (1983) described a proposition as bounded by its holding true over a time interval, with a 
limited life span terminated by later contradictory assertions.  Under Vere’s definition, an 
assertion T is a terminator for an assertion A if and only if: (1) A and T are contradictory, (2) T 
follows A in time, and (3) no assertion T ′ exists satisfying the first two conditions such that T 
follows T ′  in time.  Basically, [ ] [ ]( )TAMeets , .  
  
Take our communicative acts for example.  Suppose an initiating agent performs initiate.  As we 
shall see later, the agent has a set of BDI states (including its belief that the communication 
channel is operating, ( )tgoodchannelBB i ,_: ) that holds true such that the collective interval, Θ , 
of those states overlaps the communicative act’s interval, [ ] [ ]( )initiateOverlaps ,Θ .  That is, the 
communicative act may continue after Θ  no longer holds.  Further, if the communication fails, 
which in this case means the message is not sent, the agent generates a belief 

( )kgoodchannelBB i ,_:¬ .  This becomes a terminator of initiate since one of the preconditions for 
the communicative act and the new belief state are contradictory and ( )ktMeets , .  As a result, the 
action is terminated. Note that a proposition or an assertion in our logical negotiation protocol 
holds until terminated by a terminator, and so does a terminator.  A termination may lead to the 
stoppage of a set of actions or tasks, which in turn may lead to the stoppage of a set of events.  
An action or task may, however, terminate by itself normally as it completes within a time 
interval. 
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2.3.  Coalition Formation 
When an agent, for example, senses a target, it needs to form a coalition from which to ask for 
help.  To do so, it collects all its current BDI states and external information to obtain a list of 
potentially helpful neighbors.  Since each task is new, that means in the beginning of the 
coalition formation, there exist no belief states such that ( )( )BtnCanDoBB ,,: ρα  where n is a 
member of the set of all known neighbors, αN , of the agent α  and ρ  is the new task.  After a 
domain-specific search process, the agent obtains a list of potentially helpful neighbors, 

αα NN ⊆′ .  At this point, equipped with this list, the agent ( )( )BtnCanDoBBn ,,: ρα∀  where αNn ′∈ .  
Then the agent checks its needs and creates desires for only a certain number of these neighbors 
to perform the tasks (since enlisting everybody one knows to help out a task is counter-
productive).  In our actual agent design, these neighbors are ranked according to their utility 
values.  The agent then checks the number of available negotiation threads that it may use to 
negotiate with these neighbors.  That number trims αN ′  to obtain αN ′′ .  At this point, the agent 

( )( )DtnDoDDn ,,: ρα∀  where αNn ′′∈ .  Subsequently, as the agent begins to send out requests, with 
each successful contact, the agent forms ( )( )( )ItnDonNegotiateII ,,,: ρα  with the neighbor n that has 
made contact.  In the end, all neighbors contacted are in the coalition ( )ρα

r
C  such that 

( ) αα ρ NC ′′⊆
r  and where ( ){ }ρα

ρρρρ rL
r

C,,, 21=  is a set of subtasks that contribute to the original 
task.  In this way, each neighbor is contacted to perform a subtask and a coalition formation 
drives an agent to negotiate with its neighbors. In terms of the temporal interval relationships, 
since a negotiation process is stepwise and interruptible, if an agent does not have the desire for 
a neighbor to perform a task, then it does not intend to negotiate with that neighbor regarding 
that particular task.  Thus, we have the following condition: ( ) ( )DIBD ttDuringttDuring ,, ∧ . 
 
Note that in our model, we have N 1-to-1 negotiations but do not conduct direct 1-to-N 
negotiations.  That is, during a negotiation, a negotiation thread does not consult directly other 
negotiation threads of the same agent.  However, the parent agent of the negotiation threads does 
examine the completion status of its negotiation threads and may change the beliefs, desires, and 
intentions of the negotiation threads through negotiation-related predicates due to the results of 
other negotiations.  This design choice is motivated by real-time concerns.  Instead of having the 
negotiator module of a negotiation thread monitoring the activities of other negotiation threads 
of the same agent, the core thread of the agent monitors the negotiation activities through the 
coalition manager.  The coalition manager determines whether a coalition is still viable, whether 
a coalition has been achieved, and whether a coalition is to be aborted, and commands each 
individual negotiation thread accordingly.  Thus, each negotiator can concentrate on their 
negotiation task at hand. 
 
Our coalition formation consists of three stages: (1) coalition initialization where an agent 
obtains a ranked list of potentially helpful neighbors, αα NN ⊆′  based on the current problem, (2) 
coalition finalization where the agent contacts the neighbors in αα NN ⊆′  to negotiate, and (3) 
coalition acknowledgment where the agent concludes the success or failure of the coalition and 
inform neighbors who have agreed to help.  In coalition initialization, a neighbor is ranked based 
on its potential utility in helping with the current problem.  This potential utility is based on the 
past and current relationships between the agent and the neighbor, and the ability of the neighbor 
with the current problem.  For example, if the target is moving towards the sensor coverage of 
the neighbor and will be inside the coverage for a long time, then the neighbor has a high 
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potential utility.  During the coalition finalization step, the agent negotiates with the ranked 
neighbors concurrently.  As each negotiation thread reports its final status the core thread (the 
parent agent), the parent agent decides whether to abort meaningless negotiations or to modify 
negotiation tactics.  After the finalization step, the agent knows whether it has a coalition.  If it 
does, it sends a confirmation message to all the neighbors who have agreed to help.  If it does 
not, it sends a discard message to those who have agreed to help; this is the acknowledgment 
step.   
 

2.4. Complete Negotiation Rules and Protocol 
Our agents are cooperative and are also directed to satisfy global goals.  Each is motivated to 
look for help from its neighbors and to entertain negotiation requests from its neighbors, and 
each genuinely wishes to have a successful negotiation.  First, we have the implicit assumption 

( )alwaystCooperateDD ,: α  where 0, timet salways =  is the start time and ∞=falwayst ,  is the finish time, 
meaning that the desire is always true.  Second, we have ( )alwaystGoalGlobalSatisfyDD ,: −−α . 
 
When an initiating agent, i, negotiates with a neighbor, r, the agent has the following BDI states, 
as shown in the previous section: 
 

( ) ( )( )
( )( ) ( )( )( )IiDi

Bialwaysi

trDorNegotiateIItrDoDD

trCanDoBBtCooperateDD

,,,:,,:

,,:,:

ρρ

ρ

∧

∧∧
. 

 
Combining the above states with ( )alwaysi tGoalGlobalSatisfyDD ,: −− , we assume that each agent: 
 

( )( )( )( )Ii trDorNegotiatesucceedII ,,,: ρ . 
 

The above intention motivates an initiating agent to continue negotiating.  In the later discussion, 
we use this intention to explicitly drive the negotiation axioms, while keeping other BDI states 
implicit. 
 
When a responding agent, r, receives a request to negotiate from an initiating agent, i, the agent 
parses the message and examines its own current states.  If it believes it can perform the 
requested task yet does not have the desire to do so, then because of the desire to cooperate, it 
has the following BDI states: 
 

( ) ( )( )
( )( ) ( )( )( )IrDr

Bralwaysr

trDoiNegotiateIItrDoDD

trCanDoBBtCooperateDD

,,,:,,:

,,:,:

ρρ

ρ

∧¬∃

∧∧
. 

 
Similarly, combining the above states with ( )alwaysr tGoalGlobalSatisfyDD ,: −− , we have the 
following that keeps the agent negotiating: 
 

( )( )( )( )Ir trDoiNegotiatesucceedII ,,,: ρ . 
 

A completely successful negotiation results in ( )( )Dr trDoDD ,,: ρ .  The negotiating strategy of an 
initiating agent is to help the responding agent achieve ( )( )Dr trDoDD ,,: ρ  while that of the 
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responding agent is to let itself be persuaded by the initiating agent’s arguments in order to 
achieve ( )( )Dr trDoDD ,,: ρ .  As we will see in the next two sections, there are partially successful 
negotiations and different types of failures.  Furthermore, we have to deal with the duration of a 
BDI state.  A BDI state holds true only sufficiently long: (1) no longer than the duration of the 
task to be performed, or (2) until ended by a terminator.  For the implicit assumptions, the tasks 
Cooperate and Satisfy-Global-Goal have infinite duration.  So, in ( )( )Dr trDoDD ,,: ρ , the agent r 
only desires to do the task for at most the duration of the task ρ .  Thus, we have 

( )[ ]( )ρ,, rDotDuring D  where ( )[ ]ρ,rDo  is the time interval for r performing the task.  This 
assumption applies to all BDI states related to performing a task.  On the other hand, when a 
negation of performing a task is involved, such as ( )( )Dr trDoDD ,,: ρ¬ , the agent cannot rely on 

( )[ ]ρ,rDo  to quantify Dt .  In our design, instead of making Dt  a moment or a point, we let it be 
until terminated by another assertion/proposition (e.g., generated by a later coalition process).  
These assumptions allow an agent to negotiate regarding the same task at two different times as 
long as the task negotiated first has completed since the BDI states of performing a task are self-
terminating and those of not performing a task are terminated by assertions generated by other 
agent activities. 
 
Finally, we have to deal with arguments since our negotiation approach is argumentation-based.  
Suppose the request is for the responding agent r to perform the task ρ : ( )ρ,rDo .  The 
responding agent has a set of internal arguments, rΓ , for and against performing the task.  If the 
agent believes it can perform the task but rΓ ⊭ ( )( )Dr trDoD ,, ρ  (meaning the arguments do not 
support the desire for performing the task), then it has to rely on the initiating agent for more 
arguments.  The initiating agent has its own set of arguments, iΓ , for the responding agent 
performing the task.  The underlying approach is to send over a subset iΓ′  of iΓ  to the responding 
agent until 
 

ir Γ′∪Γ  ⊨ ( )( )Dr trDoD ,, ρ  (in which case the negotiation succeeds),  
 

or until  
 

ir Γ∪Γ  ⊭ ( )( )Dr trDoD ,, ρ  (in which case the negotiation fails),  
 

where ii Γ⊆Γ′ is the set of arguments already communicated to the responding agent from the 
initiating agent.  This assumption is a critical element in our negotiation protocol as it facilitates 
a stepwise evaluation of arguments to move closer to a conclusion of the negotiation. 
 
2.4.1.  Initiating Behavior 
 
Here we outline the axioms that link an agent’s communication and its internal states for 
conducting negotiations as an initiating agent. 
 
Initiate.  When an initiating agent (i) believes that it intends to negotiate with the responding 

agent (r) to perform a task ρ , it initiates a negotiation request to the responding agent. 
 



 

 

 

13

( )( )( ) ( )( )initiatecoutoutIi trDoriinitiateCtrDorNegotiateII ,,,,,:,,,: ρρ ⇒  
 

where ( )Iinitiatecout ttDuring ,, .  The predicate initiate encapsulates the act of composing an 
INITIATE-type message and sending the message to agent r.   
 
Failure 1.  When an initiating agent (i) receives a NO_GO message from a responding agent (r), 

it believes that the responding agent r cannot perform the requested task ρ  and stops 
intending r to perform the task.   

 
( )( ) ( )( )( )

( )( )( ) ( )( )
( )( ) rejectedtrDoDD

trCanDoBBtrDorNegotiateII

trDorNegotiateIItrDoirgonoC

Di

BiIi

Iigonocinin

∧¬
∧¬∧′¬

⇒∧

,,:
,,:,,,:

,,,:,,,,_: _,

ρ
ρρ

ρρ

 

 
where ( ) ( ) ( ) ( )DBBIIIIgonocin ttStartsttMeetsttMeetsttDuring ,,,,_, ∧∧′∧ .  The no_go communicative act 
is the encapsulation of receiving and parsing a NO_GO (an outright refusal to negotiate) 
message.  This rule allows an agent to move on to the next neighbor after the responding agent 
has outright refused to negotiate.  This is real-time motivated: instead of trying to come up with a 
lesser task and trying to establish a negotiation with the responding agent, the initiating agent 
simply gives up and shifts its focus to other neighbors.   The proposition rejected indicates the 
failure of a negotiation. 
 
Note also that in the above rule, the changes in the internal states of the agent are triggered by 
the incoming message.  This is one of our design characteristics and goals: agents communicate 
only when necessary since the environment is real-time and resource constrained, and 
information is exchanged only during negotiation. 
 
Success 1.  When an initiating agent (i) receives an AGREE message from a responding agent 

(r), it believes that the responding agent r intends to perform and will perform the 
requested task ρ .  

 
( )( ) ( )( )( )

( )( )( ) ( )( )( ) ( )( ) successtrDoDDtrDorNegotiateIItrDoDBB

trDorNegotiateIItrDoiragreeC

DiIiBri

Iiagreecinin

∧¬∧′¬∧

⇒∧

,,:,,,:,,:

,,,:,,,,: ,

ρρρ

ρρ
 

 
where ( ) ( ) ( ) ( )DBBIIIIagreecin ttStartsttMeetsttMeetsttDuring ,,,,, ∧∧′∧ .  The agree communicative act is 
the encapsulation of receiving and parsing an AGREE message.  In this axiom, if an agent 
receives an AGREE message from the responding agent, then (1) it believes that the responding 
agent desires to perform the task, (2) it intends no longer to negotiate, and (3) it desires no longer 
that the responding agent perform the task.  This third desire may seem counter-intuitive at first 
glance.  Its purpose is to say “If I believe that you have the desire to do the task, then I don’t 
have to desire you to do the task anymore,” and that does not prevent the agent to desire the 
responding agent to perform the task in the future. The proposition success indicates the success 
of a negotiation. 

 
Info 1.  When an initiating agent (i) receives a RESPOND message from a responding agent (r), 

it (1) believes that the responding agent r intends to negotiate and (2) intends to obtain a 
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successful negotiation.  Consequently, the initiating agent i intends to help r to desire to 
perform the task by supplying available necessary information. 

 
( )( ) ( )( )( ) ( )( )( )( )

( )( )( )( ) ( ) ( )( )infocoutoutiiIi

BriIirespondcinin

trDoriinfoCppptrDorNegotiatesucceedII

trDoiNegotiateIBBtrDorNegotiateIItrDoirrespondC

,

,

,,,,::,,,:

,,,:,,,:,,,,:

ρρ

ρρρ

⇒Γ′∉∧Γ∈∃∧′∧

∧∧
 

 
where  

 
( ) ( ) ( ) ( ) ( )infocoutrespondcinIinfocoutIBIIIrespondcin ttBeforettStartsttEqualsttFinishesttDuring ,,,, ,,,,, ∧′∧′∧′∧ . 

 
The communicative act respond is the encapsulation of receiving and parsing a RESPOND 
message, and the communicative act info is the encapsulation of composing and sending an 
INFO message, including selecting a p from the set of arguments, iΓ , that is not a member the 
set of arguments already sent, iΓ′  to r.  Clause 1 of the axiom explicitly derives the motivation 
for the initiating agent to continue negotiating as it intends to have a successful negotiation since 
it now believes that the responding agent intends to negotiate as well.  Clause 2 of the axiom 
drives the agent to send over more arguments to help bring a successful conclusion to the 
negotiation.   
 
Info_null 1. When an initiating agent (i) receives a RESPOND message from a responding agent 

(r), it (1) believes that the responding agent r intends to negotiate and (2) intends to 
obtain a successful negotiation.  However, if i has run out of information or arguments, 
then it notifies r that it can no longer provide arguments. 

 
( )( ) ( )( )( ) ( )( )( )( )

( )( )( )( ) ( ) ( )( )nullinfocoutoutiiIi

BriIirespondcinin

trDorinullinfoCppptrDorNegotiatesucceedII

trDoiNegotiateIBBtrDorNegotiateIItrDoirrespondC

_,

,

,,,,_::,,,:

,,,:,,,:,,,,:

ρρ

ρρρ

⇒Γ′∉∧Γ∈∃∧′∧

∧∧
 

 
where  
 

( ) ( ) ( ) ( ) ( )nullinfocoutrespondcinInullinfocoutIBIIIrespondcin ttBeforettStartsttEqualsttFinishesttDuring _,,_,, ,,,,, ∧′∧′∧′∧ . 
 

This rule is the counterpart to Info 1 previously discussed.  When an agent runs out of 
arguments, it notifies the responding agent about it.  Instead of giving up on the negotiation right 
away—since obviously the initiating agent knows that it has not been able to persuade the 
responding agent and now it has run out of arguments, the initiating agent informs the 
responding agent of its situation and hopefully the responding agent will be able to counter-offer.  
So, in a way, this shifts the responsibility of achieving a successful negotiation to the responding 
agent from the initiating agent.  Up until this point, the initiating agent has been responsible for 
keeping the negotiation going by supplying arguments/information to the responding agent, 
trying to convince it.  Finally when the initiating agent can argue no further, the decision shifts to 
the responding agent. 
 
Info 2.  When an initiating agent (i) receives a MORE_INFO message from a responding agent 

(r), it simply supplies more unused arguments.  
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( )( ) ( )( )( )( )
( ) ( )( )infocoutouti

Iimore_infocinin

trDoriinfoCppp

trDorNegotiatesucceedIItrDoirinfomoreC

,

,

,,,,::

,,,:,,,,_:

ρ

ρρ

⇒Γ′∉∧Γ∈∃∧

′∧
 

 
where ( ) ( ) ( )infocoutinfomorecinIinfocoutIinfomorecin ttBeforettDuringttDuring ,_,,_, ,,, ∧′∧′ .  This axiom is similar to 
Info 1. 

 
Info_null 2.  When an initiating agent (i) receives a MORE_INFO message from a responding 

agent (r), if it does not have any more arguments, then it notifies r of its status.  
 

( )( ) ( )( )( )( )
( ) ( )( )nullinfocoutoutii

Iimore_infocinin

trDorinullinfoCppp

trDorNegotiatesucceedIItrDoirinfomoreC

_,

,

,,,,_::

,,,:,,,,_:

ρ

ρρ

⇒Γ′∉∧Γ∈¬∃∧

′∧
 

 
where ( ) ( ) ( )nullinfocoutinfomorecinInullinfocoutIinfomorecin ttBeforettDuringttDuring _,_,_,_, ,,, ∧′∧′ .  This axiom is 
similar to Info_null 1. 

 
Info 3.  When an initiating agent (i) receives a counter-offer ( ρ′ ) from a responding agent (r), i 

believes that r desires to perform ρ′ .  However, if ρ′  is not acceptable, then the agent i 
continues to send unused arguments to r.  

 
( )( ) ( )( )( ) ( )( )

( ) ( )( )( )( ) ( )( )infocoutoutIiii

BiBricountercinin

trDoriinfoCtrDorNegotiatesucceedIIppp

tacceptableBBtrDoDBBtrDoircounterC

,

,

,,,,:,,,::

,:,,:,,,,:

ρρ

ρρρ

⇒′∧Γ′∉∧Γ∈∃∧

′′¬∧′∧
 

 
where  
 

( ) ( ) ( )
( ) ( ) ( )IinfocoutinfocoutBBB

IBBcountercinIcountercin

ttDuringttMeetsttFinishes

ttDuringttMeetsttDuring
′∧∧′∧

′′∧∧′

,,,

,,,

,,

,, . 

 
This axiom is similar to Info 1.  The communicative act counter is the encapsulation of receiving 
and parsing a COUNTER-type message, in which contents  holds the counter-offer ρ′ .  Clause 
1 states that when an initiating agent receives a counter-offer from the responding agent, it 
believes that the responding agent desires to perform the counter-offer.  Now, the initiating agent 
checks the acceptability of the counter-offer.  If the counter-offer is not acceptable and the agent 
still has unused arguments, then it sends over more arguments.  This is how an initiating agent 
counter-offers a counter-offer: sending over more arguments in hope that the responding agent 
will come back with a better counter-offer, closer to the original request. 
 
Note also the temporal relationships among infocoutt , , Bt , and Bt ′ .  As soon as the initiating agent 
realizes that the counter-offer is not acceptable, both its beliefs that the responding agent desires 
to perform the counter-offer and that the counter-offer is unacceptable terminate and trigger the 
communicative act info.  In other words, when the initiating agent counters a counter-offer, all 
beliefs regarding the counter-offer no longer hold. 

 
Info_null 3. When an initiating agent (i) receives a counter-offer ( ρ′ ) from a responding agent 

(r), i believes that r desires to perform ρ′ .  However, if ρ′  is not acceptable and the 
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agent does not have any more unused arguments, it notifies r that it can no longer provide 
arguments.  

 
( )( ) ( )( )( ) ( )( )

( ) ( )( )( )( ) ( )( )nullinfocoutoutIiii

BiBricountercinin

trDorinullinfoCtrDorNegotiatesucceedIIppp

tacceptableBBtrDoDBBtrDoircounterC

_,

,

,,,,_:,,,::

,:,,:,,,,:

ρρ

ρρρ

⇒′∧Γ′∉∧Γ∈¬∃

∧′′¬∧′∧
 

 
where  
 

( ) ( ) ( )
( ) ( ) ( )InullinfocoutnullinfocoutBBB

IBBcountercinIcountercin

ttDuringttMeetsttFinishes

ttDuringttMeetsttDuring
′∧∧′∧

′′∧∧′

,,,

,,,

_,_,

,, . 

 
This axiom is the counterpart of Info 3. 
 
Success 2. When an initiating agent (i) receives a counter-offer ( ρ′ ) from a responding agent (r), 

i believes that r desires to perform ρ′ .  If ρ′  is acceptable, then i agrees.  
 

( )( ) ( )( )( )
( )( ) ( )( )( )( )

( )( ) ( )( ) ( )( )
( )( )( ) ( )( )( )( ) successtrDorNegotiatesucceedIItrDorNegotiateII

trDoDDtrCanDoBBtrDoriagreeC
trDorNegotiatesucceedIItacceptableBB

trDoDBBtrDoircounterC

IiIi

DiBiagreecoutout

IiBi

Bricountercinin

∧′′¬∧′′¬

∧¬∧′′¬∧⇒

′∧′′∧

′∧

,,,:,,,:

,,:,,:,,,,:
,,,:,:

,,:,,,,:

,

,

ρρ

ρρρ
ρρ

ρρ

 

where 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )IagreecoutIDBBII

agreecoutBBBIBIcountercin

ttDuringttStartsttMeetsttMeets

ttMeetsttFinishesttDuringttDuring
′′∧′′∧′′∧′′′∧

∧′∧′′∧′

,,,,

,,,,

,

,, . 

 
The communicative act agree is the encapsulation of composing and sending an AGREE 
message, in which contents  holds the counter-offer ρ′ .  With this axiom, as soon as the 
initiating agent agrees to a counter-offer by the responding agent, it (1) believes that the 
responding agent cannot do the originally requested task, (2) desires no longer that the 
responding agent performs the task, (3) intends to negotiate no further regarding the task, and (4) 
intends no longer to have a successful negotiation regarding the task.  However, the negotiation 
still ends with a success tag because even though the initiating agent does not get what it wanted 
originally, it does obtain a portion of its original request; hence it is a partial success.   
 
Failure 2.  When an initiating agent (i) receives a STOP message from a responding agent (r), it 

believes that the responding agent r does not desire to perform the requested task ρ  and 
thus stops negotiating with r to perform the task, and the negotiation fails.  
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where ( ) ( ) ( ) ( )IIDIBIIstopcin ttMeetsttMeetsttMeetsttDuring ′′′∧′∧′∧′ ,,,,, .  The communicative act stop is the 
encapsulation of receiving and parsing a STOP message.  This rule is similar to Failure 1.  In 
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addition, it also states that the agent intends to not negotiate.  In our current design we do not 
differentiate between an outright failure (failure type 1) and an opt-out failure (failure type 2)—
both end with a rejected tag.  
 
Failure 3I.  This rule is similar to Failure 2 except for that it deals with an ABORT message and 

ends with an abort tag. 
 
Failure 4I.  This rule is similar to Failure 2 except for that it deals with an OUT_OF_TIME 

message and ends with an out_of_time tag. 
 
Abort I.  When an initiating agent (i) no longer intends to negotiate with a responding agent (r) 

to perform a requested task ρ , it aborts the negotiation. 
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where ( ) ( ) ( ) ( )IIIabortcoutDabortcoutIabortcout ttFinishesttDuringttDuringttDuring ′′′∧′′∧∧′ ,,,, ,,, .  The 
communicative act abort is the encapsulation of composing and sending an ABORT message.  
This rule says that if an initiating agent aborts a negotiation, then it informs the responding 
agent. 
 
Out_of_time I.  When an initiating agent (i) runs out of its allocated time for the negotiation 

with a responding agent (r) to perform a requested task ρ , it aborts the negotiation. 
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where ( ) ( ) ( )IIItimeofoutcoutIB ttMeetsttDuringttDuring ′′′∧′′∧′ ,,, __, .  The time predicate encapsulates the 
acts of obtaining and comparing the time elapsed for the negotiation against the time allocated 
for the negotiation.  The communicative act out_of_time predicate is the encapsulation of 
composing and sending an OUT_OF_TIME message to the responding agent.  This rule states 
that when the agent has run out of time allocated for the negotiation, it no longer intends to 
negotiate. This is real-time motivated. 
 
No_response I.  When an initiating agent (i) detects receives no response from a responding 

agent (r) during a negotiation, then it unilaterally quits the negotiation with a failure.   
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where ( ) ( )IIIB ttMeetsttDuring ′′′∧′ ,, .  The no_response predicate is one of our real-time enabling 
functional predicates to be discussed next.  This axiom allows an agent to bail out of a 
negotiation when the negotiation partner fails to respond.   
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Figure 2 shows the time lines of the initiating agent’s behavior when faced with an outright 
rejection or agreement.  These are the simple cases of the axioms above.  The length of the 
process is based on initiatecoutt , , gonocint _, , and agreecint , .  During such time, 

( )( )( )Ii trDorNegotiateII ,,,: ρ  holds true.  After that, the intention can be removed or modified. 
 

 
Figure 2  (a) Outright rejection and (b) outright agreement, from the initiating agent’s point of view. 

 
Figure 3 shows the negotiation process, from the initiating agent’s point of view once the 
responding agent agrees to negotiate.  The negotiation process is a manifestation of the axioms 
discussed above, proving a flow of communicative acts and BDI states that drives the completion 
of the negotiation.  It is with the temporal BDI axioms that we are able to produce Figure 4, an 
explicit outline of the interactions of the communicative acts with various BDI states—
specifying when and how long certain states must hold true, cannot be modified, can change, can 
be accessed, or are of no concern.  It is also through the axioms that we are able to guarantee the 
completion of a negotiation process within a certain time.  For example, if the initiating agent 
goes through the following steps:  initiate, parse respond, info, parse more_info, info, parse 
more_info, info_null, parse counter, check to see whether the counter-offer is acceptable, and 
agree, then we know how much time it takes to do so by summing up the temporal intervals 
associated with each step.  The acceptability of the counter-offer has to be held constant 
throughout the agreement step.  This explicit declaration of time constraints is important since 
each of our agents is multi-threaded, where several threads may access and need to modify the 
same variable at the same time.  Without the axioms, a variable such as the acceptability of the 
counter-offer might accidentally be modified by another negotiation thread, rendering the current 
negotiation process ambiguous.  Moreover, with the temporal intervals, we are able to fine-tune 
the system by observing the time usage of each communicative act for speedup.  For example, 
with the BDI states, we know the minimal time we need to hold the value of a variable constant.  
The shorter the time needed for a variable to be held constant, the more frequent the variable can 
be updated and accessed, allowing other threads to proceed. 
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Figure 3  Negotiation from the initiating agent’s point of view (a simplified version).  Temporal intervals in 

brackets are options.  Note that once the initiating agent receives a RESPOND message from the responding 
agent, it is committed to negotiate successfully since it believes that the responding agent desires to negotiate. 

 
2.4.2.  Responding Behavior 
Here we outline axioms that link an agent’s communication and its internal states for conducting 
negotiations as a responding agent. 
 
No_go.   When a responding agent (r) believes that it cannot perform a requested task ρ  from an 

initiating agent i, it outright refuses to negotiate. 
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where ( ) ( )BgonocoutBinitiatecin ttDuringttMeets ,, _,, ∧ .  The communicative act no_go encapsulates the act 
of composing a NO_GO message and sending the message to agent i.  Agents are responsible in 
that if a responding agent refuses to negotiate, it informs the initiating agent.   
 
Agree 1.  When a responding agent (r) (1) believes that it is already performing a requested task 

ρ  or (2) desires to perform ρ , it agrees to perform the task. 
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where  
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The communicative act agree encapsulates the acts of composing an AGREE message and 
sending the message to the initiating agent.  The rule strengthens the desire of the agent to 
continue performing the task.  As previously discussed, an agent may be still performing a task 
while it no longer desires to do so because a task may be atomic and non-interruptible.  So, when 
the responding agent realizes the initiating agent requests for the same task to be performed, then 
it re-asserts its desire to ensure the continuation of the task.  We also use the relation ( )DD ttMeets ′,  
to transition the desire—extending the period of time for the responding agent’s desire to 
perform the task.  
 
Note also that with this rule, the responding agent agrees to help only because it is already 
performing the task, but the agree predicate does not reveal that to the initiating agent.  This 
simplifies our agent design in two ways: (1) the responding agent does not have to explain to the 
initiating agent why it agrees to perform a requested task, and (2) the initiating agent does not 
have to remember why the responding agent agreed to a requested task.  
 
Respond.  When a responding agent (r) believes that it can perform a requested task ρ , and 

there is no desire to perform ρ  nor belief that it is performing ρ , it responds to the 
negotiation request, i.e., it agrees to negotiate. 
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where  
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The communicative act respond encapsulates the acts of composing a RESPOND message and 
sending the message to the initiating agent.  If the responding agent believes it can perform the 
task, and yet it currently does not have a desire to do so, and does not believe it is performing the 
task, then it decides to negotiate.  Note that the implicit social behavior of the agents is at play 
here: because of the cooperativeness of the agent, it intends to negotiate and intends to negotiate 
successfully.  These two intentions motivate the responding agent to continue negotiating. 
 
More_info.  When a responding agent (r) receives arguments from an initiating agent (i) for a 

requested task ρ , it processes the arguments to update evidence support for the task.  If 
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the support is still lacking, and the negotiation is on time or the task is discrete, then it 
asks for more arguments. 
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where  
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Auxiliary to More_info.  The action update examines the arguments collected, iΓ′  during evidencet   

where ( )Ievidence ttFinishes ′′, , to see if the proposition ri Γ∪Γ′  ⊨ ( )( )Dr trDoDD ,,: ρ .  If so, then 
( )( )Dr trDoDD ,,: ρ  where ( )DI ttMeets ,′′ . 

 
First, the communicative act info encapsulates the actions of receiving and parsing an INFO-type 
message from the initiating agent, in which the contents  holds the arguments ip Γ∈  during commt  
and ip Γ′∉  during commt  where ( )infocincomm ttBefore ,, .  The responding agent then examines the 
arguments by invoking the predicate update.  Since update is an action, it is self-terminating and 

( )[ ]( )iI updatetEqual Γ′′′ , .  If the arguments are sufficient, then update results in ( )( )Dr trDoDD ,,: ρ ; 
otherwise, the negotiation continues.  If at the meantime the agent believes that the pace of the 
negotiation is not slow or that the task is discrete, then it continues to ask for more information 
from the initiating agent.  Note that in our protocol, a responding agent can only make a counter-
offer when the requested task is non-discrete.  There are two conditions that prompt a responding 
agent to counter-offer: (1) when the initiating agent does not have any more arguments (as 
discussed later), or (2) when the pace of the negotiation is slow.  The predicate slow measures 
the pace of a negotiation.  The predicates update, slow, and discrete are part of our real-time 
enabling functional predicates and will be discussed next.   
 
Agree 2.  When a responding agent (r) receives arguments from an initiating agent (i) for a 

requested task ρ , it processes the arguments to update evidence support for the task.  If 
the support is enough, then it agrees to perform ρ . 
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This axiom is a counterpart of More_info.  If it turns out that the arguments are sufficient, then 
the responding agent agrees to the request.  It uses the communicative act agree to compose and 
send an AGREE-type message to the initiating agent.  The negotiation ends with a success tag.  
Also, the agent also stops intending to negotiate and to negotiate successfully. 
 
Counter 1.  When a responding agent (r) receives arguments from an initiating agent (i) for a 

requested task ρ , it processes the arguments to update evidence support for the task.  If 
the support is not enough, the pace of the negotiation is slow, and ρ  involves non-
discrete resource, then r makes a counter-offer ( ρ′ ). 
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The communicative act counter encapsulates the acts of finding a counter-offer ( ρ′ ), composing 
a COUNTER-type message, and sending the message to the initiating agent.  The counter-offer 
ρ′  is stored in the contents  of the message.  This is a companion rule to More_info as discussed 
above.  If the negotiation is off pace, then instead of asking for more information/arguments, the 
responding agent counter-offers.  This is motivated by the intention of the agent to achieve a 
successful outcome to the negotiation.  However, if the task involves a discrete resource, then a 
counter-offer is impossible and the More_info rule overwrites the Counter 1 rule.  Further, even 
though the responding agent makes a counter-offer, it does not have the desire to perform the 
task counter-offered.  It only has the desire to do so after the initiating agent agrees to it.  This is 
represented later in axiom Success 3. 
 
Note that the motivation behind a counter-offer is to speed up the pace of the negotiation or as a 
last-ditch effort to salvage a failing negotiation.  We do not perform counter-offer as part of the 
normal interaction—to evaluate and re-plan proposals at each negotiation step would have 
slowed down our negotiations and that is not applicable to a real-time problem. 
 
Stop.  When a responding agent (r) is notified by an initiating agent (i) that it has no more 

arguments for a requested task ρ , and the task is discrete, the agent r stops the 
negotiation, and the negotiation fails. 
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The communicative act info_null is the encapsulation of receiving and parsing an INFO_NULL-
type message from the initiating agent, while the communicative act stop encapsulates the 
actions of composing a STOP-type message and sending the message to the initiating agent.  
This is when the responding agent gives up on the negotiation, after being informed that no more 
arguments are on the way.  As a result, it no longer intends to negotiate, and it opts out by 
informing the initiating agent as a responsible gesture.  The proposition stop indicates the failure 
of a negotiation because the responding agent is not convinced to perform the requested task. 
 
Counter 2.  When a responding agent (r) is notified by an initiating agent (i) that it has no more 

arguments for a requested task ρ , and the task is discrete, the agent r makes a counter-
offer ( ρ′ ). 
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This axiom is a counterpart of Stop, and closely resembles Counter 1.  Driven by the intention to 
succeed in the negotiation, the responding agent, after being notified of no more arguments 
coming in from the initiating agent, voluntarily makes a counter-offer if the task is non-discrete.   
 
Failure 3R.  This axiom is similar to Failure 3I. 
 
Failure 4R.  This axiom is similar to Failure 4I. 
 
Abort R.  This axiom is similar to Abort I. 
 
Out_of_time R.  This axiom is similar to Out_of_time I.   
 
Success 3.  When a responding agent (r) receives an AGREE message from an initiating agent 

(i) to its counter-offer ( ρ′ ), the responding agent desires to perform the counter-offer, 
and the negotiation ends with success. 
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where ( ) ( ) ( )IIDIIagreecin ttMeetsttMeetsttFinishes ′′′∧′∧′ ,,,, .  The communicative act agree predicate 
encapsulates the acts of receiving and parsing an AGREE-type message, in which contents  
holds the information regarding ρ′ .  This rule says that if the initiating agent agrees to the 
counter-offer, then the responding agent (1) desires to perform the counter-offered task and (2) 
intends no longer to continue with the negotiation regarding the originally requested task. 
 
No_response R.  This is similar to No_response I.   
 
Figure 4 shows the time lines of the initiating agent’s behavior when faced with an outright 
rejection or agreement.  These are the simple cases of the axioms above.  See for example that 
when the responding agent agrees to a request, it extends the desire to do the requested task.   
 

 
Figure 4  (a) Outright rejection and (b) outright agreement, from the responding agent’s point of view. 

 
Figure 5 shows the negotiation process, from the responding agent’s point of view once it agrees 
to negotiate.  Similar to Figure 3, Figure 5 allows us to explicitly describe the temporal 
relationships among the BDI states and the communicative acts.  That description, in turn, allows 
us to guarantee the behavior of the negotiation and to fine-tune its efficiency. 
 
Functional Predicates 
In this section, we describe the functional predicates mentioned in the previous section that 
present the logical framework for the rules of encounter between two agents.  These predicates 
are the infrastructure to our real-time negotiation protocol.  To simplify the discussion, we have 
touched upon 11 communicative acts such as initiate, respond, no_go, agree, etc. and six 
negotiation-related functional predicates: slow, time, discrete, no_response, acceptable, and 
update.  Here we will elaborate further on the six predicates as they are an integral part that 
enables the real-time negotiation between the agents.   
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Figure 5  Negotiation from the responding agent’s point of view (a simplified version).  Temporal intervals under 

brackets are options.  Note that once the responding agent sends out a RESPOND message to the initiating 
agent, it is committed to negotiate successfully. 

 
slow 
This predicate takes the form of ( )actionslow , and given an action (or a task), it measures the pace 
of the action and returns true or false.  An action has two temporal intervals: the actual real-time 
interval, [ ]action , and the planned/predicted interval, action .  Suppose that [ ]action  has a duration 
between actionst ,  and actionft , , and the set of states as a result of the action is 

{ }actionNactionaction ssS ,,0 ,,L= .  Each state, actionns , , holds during an actual interval [ ]actionns ,  such that 
(1) [ ] [ ]( )actionsDuring actionn ,, , (2) [ ] [ ]( )actionnactionn ssOverlaps ,1, , + , and (3) the temporal interval of two 
such states has a duration between the start of actionns ,  and the latest finish time of the two states, 
[ ]actionnactionn ss ,1, + .  Similarly, we can obtain actionnactionn ss ,1, +  
 When ( )actionslow  is invoked, it retrieves the current state of the action, actionactioncurrent Ss ∈, .  
If  

[ ]
[ ] action

ss

action
ss actioncurrentactionactioncurrentaction ,,0,,0 >  

is true, then ( )actionslow  returns true; otherwise, it returns false.  Note that this predicate is binary 
since we use it to trigger a counter_offer act.  A more general approach is to use a degree of 
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slowness that would not only trigger a counter_offer but also dictate how conceding the 
responding agent should be.   
 
time 
This predicate takes the form of ( )actiontime  and indicates whether an agent has run out of the 
allocated time for the action.  Suppose we have [ ]action  and action .  When an agent invokes 

( )actiontime , the predicate measures the time elapsed so far, actionscurrentelapsed ttt ,−= .  If 

actiontelapsed ≥ , then ( )actiontime  returns true; otherwise it returns false. 
 
discrete 
A discrete task is when the task cannot be broken up or attenuated.  For example, if the initiating 
agent asks the responding agent to turn on a sensor, then the responding agent may only respond 
with yes or no.  However, if the initiating agent asks the responding agent to turn on a sensor in 
five seconds, then the responding agent, in addition to yes or no, may also counter with “yes, but 
in 10 seconds”.  The introduction of the time factor makes the task a non-discrete one, allowing 
the responding agent to counter-offer.  In our negotiation protocol, a task ρ  may be qualified by 
time and resource amount.  The predicate discrete returns true if both qualities are absent, 
otherwise, it returns false.  Note that we intentionally leave out the qualification of tasks to 
simplify our discussion. 
 
no_response 
This predicate takes one argument—the agent from which the current agent is waiting for a 
message.  In general, when an agent i invokes ( )rresponseno _  on another agent r, it is after agent i 
has performed a communicative act, C.  Hence,  [ ] ( )[ ]( )rresponsenoCBefore _, .  If agent i does not 
receive a response in the interval windowt  (and ( )Iwindow ttDuring ,  given that the intention I is to 
negotiate), then ( )rresponseno _   returns true; otherwise, it returns false. 
 
acceptable 
This predicate is only invoked by an initiating agent, I, and takes as argument a task.  Suppose 
the agent i desires to achieve goal G.  To achieve G, there is a set of subtasks 

( ){ }ρρρρρ rL
r

iC,,, 21= , and a coalition, ( )ρriC , exists to distribute the subtasks among the coalition 
members.  As a result,  

 
( ) ( )( )( )DiiDi tCDoDtGD ,,, ρρ

rr
⇒ ,  
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
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iiCiC CDiDiDii trDoDtrDoDtCDoD ,,,,,,,, 111 .  As the agent 

progresses in real time, G may become G′  such that ( ) ( )( )( )DiiDi tCDoDtGD ′′′⇒′′ ,,, ρρ
rr  where 

( )DD ttDuring ,′ . For example, an agent has received commitments for some negotiated resources, 
so it no longer desires the original set of resources it asked for.  So, when the initiating agent 
receives a counter offer ρ′  from the responding agent, it invokes ( )ρ ′acceptable  to compare the 
counter-offered task ρ′  with the corresponding rρ  where ( )( )Dri trDoD ′′ ,, ρ .  If rρρ ∈′  then 

( )ρ′acceptable  returns true; otherwise, it returns false. 
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update 
This functional predicate is invoked only by a responding agent r, as previously mentioned in an 
auxiliary to the More_info axiom. 
 

2.5.  Implementation  
The driving application for our system is multisensor target tracking, a distributed resource 
allocation and constraint satisfaction problem.  The objective is to track as many targets as 
possible and as accurately as possible using a network of sensors.  Each sensor has a set of 
consumable resources, such as beam-seconds (the amount of time a sensor is active), battery 
power, and communication channels, that each sensor desires to utilize efficiently.  Each sensor 
is at a fixed physical location and, as a target passes through its coverage area, it has to cooperate 
with neighboring sensors to triangulate their measurements to obtain an accurate estimate of the 
position and velocity of the target.  As more targets appear in the environment, the sensors need 
to decide which ones to track, when to track them, and when not to track them, always being 
aware of the status and usage of sensor resources.  Each sensor can at any time scan one of three 
sectors, each covering a 120-degree swath.  Sensors are connected to a network of CPU 
platforms on which the agents controlling each sensor reside.  The physical sensors are 9.35 GHz 
Doppler MTI radars that communicate using a 900 MHz wireless, radio-frequency (RF) 
transmitter.  The agents (and sensors) must communicate over an eight-channel RF link, leading 
to potential channel jamming and lost messages. Our agents may reside on the same CPU 
platform or different platforms. 
 
We have implemented our multiagent system in C++.  Each agent has 3+n threads: (1) a core 
thread that performs the reasoning, message checking, task handling chores of the agent and thus 
is always active, (2) a communication thread that is responsible for polling for incoming 
messages and sending out messages and thus is always active, (3) an execution thread that 
performs sensor-related tasks such as calibration, target searching, and tracking, and thus is 
sometimes active and sometimes dormant, and (4) n negotiation threads that each waits to be 
awaken to perform a negotiation and goes back to a dormant state after the negotiation is over.  
This setup allows an agent to carry out various lines of tasks concurrently.  It also allows an 
agent to conduct multiple negotiations in parallel.  Each negotiation thread can be an initiating 
thread or a responding thread, depending on the dynamic, real-time instructions given by the 
core thread.   
 
The architecture of our agents is able to detect a target, forms a coalition, performs CBR to 
determine its negotiation strategy, initiates or responds to negotiations, argues to persuade its 
partner to perform a task or reasons to whether to agree to perform a task, monitors its own 
status such as its sensor, noise, tasks, and CPU resource usage, interacts with either a software 
simulation or the actual physical hardware setup, and obtains real-time data from the operating 
system supporting its execution.  More importantly, each agent is autonomous and can sense and 
react to real-time events in the environment.  Moreover, there is no hierarchy within the 
multiagent system—all agents are peers.   
 
We have also implemented the complete real-time argumentative negotiation protocol in the 
negotiator module of an agent.  With the formalisms encoded, the negotiator conducts a 
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negotiation with high efficiency and autonomy.  We have implemented all communicative acts: 
parsing messages and converting them to belief states and converting belief states and 
composing messages out of them.  We have also implemented the belief, desire, and intention 
states as functions, procedures, and clauses.  As for the temporal definitions and constraints of 
those states, we have implemented recursive mutexes (semaphore-like designs) to manage 
read/write accesses: when to acquire the value of a state, when to release a lock on the value of a 
state, when must a state be ready in order for a certain task to start, and so on.  For example, an 
agent may be tracking a target and negotiating at the same time.  While tracking, the agent may 
realize that the target is no longer visible.  This directly affects the on-going negotiation since 
now the agent’s sensor has become available, leading to a lower threshold, for example, of a 
counter-offer.  But, the negotiator module of a negotiation thread cannot afford to constantly 
check the states of the tracking.  It does so occasionally and only when it is necessary, and can 
only be interrupted at certain points over the course of the negotiation, dictated by the temporal 
definitions of the states.   

2.5.1.  Real-Time Scheduling Service (RTSS) 
We have implemented a Real-Time Scheduling Service (RTSS) in ‘C’, on top of the KU Real-
Time system (KURT) (Srinivasan et al., 1998) that adds real-time functionality to Linux.  First, 
the RTSS provides an interface between the agents and the system timers, allowing agents to: (1) 
query the operating system about the current time; (2) ask the RTSS to notify them after the 
passage of certain length of time; and (3) ask the RTSS to ping them at fixed time intervals.  This 
allows agents to know when to, for example, conclude a negotiation process or turn on a radar 
sector.  Second, the agents may ask the RTSS to notify them when certain system-level events 
occur, such as process threads being activated, or communication messages going out or coming 
into the system.  Third, the agents can ask the RTSS to allocate them a percentage of the CPU for 
each one of their threads (such as the ones controlling the radar and tracking or the ones used in 
negotiations) and to schedule this allocation within an interval of time.  This RTSS allows an 
agent to monitor the progress of its own negotiations and the usage status of its allocated CPU 
resource. 

2.5.2.  Case-Based Argumentative Negotiation 
We have implemented the CBR Manager to maintain the case base of an agent.  The 
implementation includes similarity-based retrieval, both difference- and outcome-driven 
adaptations, and the incremental and refinement learning.  We have implemented the entire 
negotiation protocol, as depicted in Figure 1, into each negotiation thread.  Each thread is 
capable of monitoring the pace of its own negotiation, retrieving messages via the 
communication thread, parsing incoming messages, making decisions and reasoning, composing 
an outgoing message and sending messages via the communication thread.  Each thread is 
autonomous in a way that the core thread of the agent does not have to tell the thread how to 
conduct a negotiation once it has gotten underway.   
 
Each thread forks off a child process that automatically invokes CLIPS.  The communication 
between a negotiation thread and its child CLIPS process is through pipes.  After receiving an 
acknowledge signal from the CLIPS child process, the negotiation thread informs the core thread 
that it is ready to accept a negotiation task and waits.  When it finally receives an activation 
signal, the negotiation thread downloads the relevant information regarding the negotiation task.  
From the information, the thread decides its identity—either an initiating thread or a responding 
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thread.  Then the negotiation thread negotiates following the negotiation protocol described in 
Section 3.  Once the negotiation is done, the thread updates its status and waits for a signal from 
the core thread before resetting itself for the next negotiation task.  Meanwhile, the core thread of 
the agent periodically checks the status of the active negotiation threads.  If a negotiation is 
completed, the core thread downloads the updated data and signals the negotiation thread that it 
is okay to reset. 
 
Here we briefly discuss our case-based strategy selection approach.  A negotiation strategy 
dictates a set of tactics for a negotiation.  For example, an initiating agent needs to know which 
arguments are more important to send over first to the responding agent.  We use case-based 
reasoning (CBR) to help us determine that.  When an agent encounters a negotiation problem, it 
searches its casebase for the most similar case, in which the problem description in that case 
resembles the current negotiation problem.  Then, based on the differences between the two 
problem descriptions, the CBR module of the agent performs an adaptation on the solution.  The 
modified solution becomes the negotiation strategy.   

2.5.3.  Real-Time Enabling Functional Predicates 
In Section 3.4, we presented the logical model of our real-time enabling functional predicates.  
Here, we describe the implementation that, even though is domain- and application-specific, may 
serve as a useful example to other designs of the predicates.  In this section, we also describe 
how our agents make a counter-offer in real-time.  Note that in our implementation, we employ 
case-based reasoning to derive a negotiation strategy for an agent for each negotiation task.  A 
case has a set of belief states (situated input parameters), a set of desires (a parametric 
negotiation strategy), and the outcome of the negotiation.  In addition, in our agent design, a 
negotiation is handled by one of the negotiation threads that an agent dispatches.  So, in the 
following, we will use the term “negotiation thread” quite often and make use of the belief and 
desire states. 
 
slow 
In a case, the desires include the number of negotiation steps allowed and the time allowed.  That 
is, a negotiation thread desires to complete a particular negotiation in n iterations and s seconds.  
A small n means that fewer messages are exchanged and the negotiation may avoid incurring too 
much overhead cost per transmission.  A small s means that the negotiation is to be completed in 
a short time.    Suppose we denote the number of negotiation steps allowed as allowedstep , the time 
allowed as allowedtime , the number of steps performed so far as sofarstep , and the time elapsed so far 
as sofartime .  We define the slow predicate for a responding agent α ’s negotiation (intending to 
achieve the desire for performing a requested task ρ ) as: 
 

( )( )( )( ) 
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time  
To implement this predicate, a negotiation thread registers its process ID with a real-time 
system-level service and makes use of a time-based notification mechanism.  A negotiation asks 
the notification mechanism to signal the thread after s seconds.  One unique characteristic of the 
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mechanism is that the negotiation thread, after registration, may find out how much of the s 
seconds has elapsed after the notification was first registered (for example, 25%, 50, 75%, 
100%) by consulting the notification flag: flagt .  The value of s is determined by the allowedtime  of 
the desire states of a case. In our current design, we define the time predicate for an agent α ’s 
negotiation as: 
 

( ) ( )1<= flagtnnegotiatiotime  
 
When flagt  = 1, that means the time elapsed has reached 100% of allowedtime .   
 
discrete  
First, we denote the set of discrete tasks disΘ  and the set of non-discrete tasks conΘ .  Then we 
define the discrete predicate of a requested task ρ  as: 
 

( ) ( )disrequestdiscrete Θ∈= ρρ  
 
where ρρ ∈request  is part of the requested task.   
 
no_response 
Our implementation is the following:  After an agent sends out a message, it polls its message 
queue for a response before moving on.  After pollingt  seconds, if the negotiation thread receives 
no messages from a particular negotiation partner, then no_response returns true.  If there is a 
consistently-typed message, then the negotiation thread reacts to it based on our negotiation 
protocol. 
 
acceptable  
This predicate is used only by an initiating agent when it receives a counter-offer from a 
responding agent and refers to non-discrete (continuous) tasks, conΘ .  Let us denote a continuous 
task as conRr ∈v .  There are three key parameters in conρ : { }amountconresconnameconcon ,,, ,, ρρρρ =  where 

namecon,ρ  is the name of the task, rescon,ρ  designates the resource involved in the task, and 

amountcon,ρ  indicates the amount of the resource involved.   
 
In our design, when an agent α  realizes ( )needed

amountconBB ,: ρα  where needed
amountcon,ρ  is nonzero, it initiates 

negotiations—each with a different requested
amountcon,ρ , to the coalition members—attempting to obtain 

enough amountcon,ρ  from the members to meet needed
amountcon,ρ , i.e., 

( )
needed

amountcon
C

requested
amountcon ,, ρρ

ρα

≥∑r
.  At each 

agent cycle, the agent α  updates its ( )needed
amountBB ρα:  and 
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then it has achieved its target, and it can abort all current negotiations associated with that 
particular resource.   The process checks (1) the current usage, (2) the anticipated usage, (3) the 
current allocation, and (4) the agreed additional allocation.  As needed

amountcon,ρ  gets smaller, the 
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remaining negotiations become less demanding in their requests, and vice versa.  As each 
negotiation completes gradually, 

( )
∑
ρα

ρ
r

C

requested
amountcon,  changes.   

 
Suppose that the kth negotiation thread of the agent α  is negotiating to obtain requested

kamountcon ,,ρ  from a 
responding agent and the responding agent has just counter-offered kρ′  with an offered amount 
of kamountcon ,,ρ ′ .  Then the acceptability of the counter-offer kρ′  is defined as: 
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update  
The update predicate is used when a responding agent receives information or arguments from 
an initiating agent.  The objective of this predicate is to find out whether the evidence support for 
a requested task is convincing enough for the responding agent to perform it.  One key parameter 
of a negotiation strategy of a responding agent, r, is the persuasion threshold, ( )ρ,, rDopersuasionT , for 
a requested task ρ .  This is a value created by the responding agent r for ρ ; to agree to ( )ρ,rDo , 
the arguments sent by the initiating agent must provide for ρ  have to be greater than ρ,persuasionT . 

Suppose we denote the evidence support for ( )ρ,rDo , with a persuasion threshold, 
( )ρ,, rDopersuasionT , at temporal interval t as ( )( )tTSupport rDopersuasion ,, ,, ρρ , and 

( )( ) 00,, ,, =timeTSupport rDopersuasion ρρ .  The objective of the initiating agent is to obtain 

( )( ) ( )ρρρ ,,,, ,, rDopersuasionrDopersuasion TtTSupport ≥  in order to convince the responding agent to perform 
the requested task.  Thus we have the following axiom: 
 
Axiom Desire to Do:  If a responding agent r is negotiating with an initiating agent i regarding a 
requested task ρ , and at temporal interval t, it has ( )( ) ( )ρρρ ,,,, ,, rDopersuasionrDopersuasion TtTSupport ≥  then 

( )( )trDoDD r ,,: ρ .  (This supplements the More_info, Agree 2, Counter 1, Stop, and Counter 2 
axioms) 
 
When arguments are received by the responding agent, the support value changes based on the 
following agent behavioral model: 

(1) Agents that have cooperated before will tend to cooperate again.   
(2) A responding agent is willing to trust an initiating agent’s perception. 
(3) An agent is more inclined to help another agent if that another agent has relied on the 

agent for help before. 
(4) An agent is more inclined to help another agent if it knows that it is one of the few 

possible solutions to the requested task. 
(5) An agent is more inclined to help another agent if it knows that that another agent is 

busy. 
 
Note that the persuasion threshold and the evidence support work together as a joint intention between 
the two negotiating agents.  On one hand, the responding agent is helpful and desires to help the 
initiating agent, but it also intends to help when it is worthwhile.  This implies cooperativeness with a 
touch of selfishness in a local sense that translates into global optimization of resource allocation.  To 
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make sure that the requested task is worthwhile to do, the responding agent uses a persuasion threshold, 
derived from its past experience and its current status.  On the other hand, the initiating agent intends 
that the responding agent help with its task.  It collects its belief states and sends over whatever it thinks 
are useful as arguments for its intention.  These arguments modify an evidence support value.  
Therefore, Definition 4 merges the two intentions, seen from two different perspectives, and the joint 
intention is to achieve a successful negotiation.  This deviates from the model proposed by Cohen and 
Levesque (1990, 1991) but if we view achieving a successful negotiation as a team action, then both 
members of the team (the two negotiating agents) are jointly committed to completing the so-called 
team action, and are mutually believing that they are doing it.   
 
We have implemented the update function as a CLIPS-based operation.  Evaluation heuristics are coded 
as CLIPS rules and arguments received from an initiating agent are fed into the CLIPS process 
(associated with each negotiation thread) to re-compute the evidence support for a requested task.  The 
CLIPS process then sends back the updated evidence support to its negotiation thread and waits for 
another set of arguments.  The negotiation thread and the CLIPS process communicate via a 
synchronized pipe connection.  The negotiation thread compares the updated evidence support with its 
persuasion threshold.  If the former is greater than or equal to the latter, then the negotiation thread 
agrees to the requested task, composes a message to notify the initiating agent of the deal, and completes 
its own negotiation.  The core thread of the agent then schedules the requested task in its activity.   

2.5.4.  Counter Offer 
When dealing with continuous resources, the responding agent has a persuasion function, 
modified by two parameters: (1) kappa – a willingness factor, and (2) beta – a conceding factor, 
and bounded by the maximum resource that it is willing to give up, max

amountcon,ρ .  An agent can use 
any function2 to express the continuous persuasion value; in our implementation, we examined 
two: a linear and an exponential persuasion function.  
 
In our model, the linear persuasion function is: 
 

( ) kappabetalinear +⋅=Ρ ττ  
 
and, the exponential persuasion function is: 
 

( ) beta
exp ekappa

τ
τ

−
⋅=Ρ  

 
The variable τ  is the evidence support collected so far, i.e., ( )( )tTSupport rDopersuasion ,, ,, ρρτ = .  So, in 
the beginning, at st  when the support is zero, a responding agent is willing to give up 

( ) kappalinear =Ρ 0  or ( ) kappaexp =Ρ 0 .  That is why kappa is called the willingness factor.  Then for 
0>τ , the conceding rate depends on beta: the larger this value is, the more conceding the 

                                                 
2 There have been a variety of persuasion functions used in previous work in negotiation.  
Lander and Lesser (1992) used linear functions of local utility values over contract prices.  
Zlotkin and Rosenschein (1996) suggested nonlinear and exponential worth (or utility) functions 
and task-based, pre-defined worth functions.  In (Faratin et al. 1998), polynomial, exponential, 
Boulware tactics and Conceder are used. 
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persuasion function is.  The key differences between our persuasion functions and others are (1) 
the conceding and willingness factors are determined by past experiences, and adapted to fit the 
current situation, (2) each function applies to an evidence support based on arguments, (3) each 
function is implicitly bounded by allowedtime  for a negotiation, and (4) each function is bounded 
by max

amountcon,ρ , the maximum amount of a resource that the agent is willing to give up.   
 
Thus, when a responding agent is about to make a counter-offer, it checks τ , and the counter-
offer, amountcon,ρ ′  is given as: 

 
( )

( )





>Ρ

Ρ
=′ max

amountcon
max

amountcon
amountcon if ,,

, ρτρ

τ
ρ . 

 

2.6.  Results 
Our experiments concentrated on evaluating whether negotiating agents can track targets better.  
Our hypothesis was that negotiating agents can track targets better since they can coordinate 
radar measurements and achieve better triangulation.  Our experiments support this hypothesis.  
In addition to the accuracy of tracking, we used communication as a measure of quality (length 
of messages, frequency of messages and message cost, i.e. length times frequency), since 
communication is an important bottleneck to scalability.  Here we discuss briefly some 
experiments, focusing on the benefits of negotiations and case-based reasoning. 
 
First we compared our system to a multiagent, sensor-controlling network where there is no 
communication between the agents, and where when a target appears in the coverage area of a 
sensor it is tracked.  Next, we compared our case-based negotiating agents to a system where 
negotiation uses a predefined, static strategy.  We selected the static strategy carefully to make 
sure it should be adequate for most cases.  Basically, we used the case that had been frequently 
retrieved in our previous experiments as the only case in the case-base. 
 
In general, the results, summarized in figures 6-8, were positive.  The agents which used no 
negotiation sent almost 20% more messages, although they had a 50% smaller message cost, but 
had almost 27% worse tracking accuracy than negotiating agents.  The non-negotiating agents 
exchanged no messages, and only sent their radar measurements to the tracking software.  Since 
there was no coordination of the measurements, there were too many messages sent to the 
tracker.  On the other hand, such messages are short compared to arguments exchanged between 
agents during negotiation, resulting in lower message costs.  Since there was no cooperation to 
triangulate measurements, the resulting accuracy was poor.  The agents that used a static 
negotiation strategy fared worse than the ones that used a case-based, adaptive strategy.  
Specifically, the agents using a static protocol sent approximately 10% fewer messages but had a 
higher message cost, and had almost 18% worse accuracy than the case-based negotiating 
agents.  The message cost is due to the fact that the case-based agents change the ranking of the 
arguments they communicate based on the situation; this leads to overall more effective 
communication acts.  The accuracy is due to the fact that case-based agents adapt their 
negotiation to the current situation and have a higher chance of achieving agreement for resource 
allocation; on the other hand the static strategy agents failed to agree more often and this led to 
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failure to perform the multiple, simultaneous radar measurements that are required for accurate 
tracking. 

 

 Figure 6 Tracking accuracy vs. agent behavior 
 

Figure 7  Number of messages to agents and to tracking software vs. agent type.  Numbers of messages normalized 
for better comparison. 
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Figure 8  Percentage of successful negotiations vs. negotiation strategy type. 
 
 
 
3. Near-Real-Time Negotiating Agents using Domain Constraints 
As the project progressed, our choice of using C++ for the agent design became a liability and 
limitation: using a JNI proxy for communicating with Radsim and the CP code slowed down our 
code; not being able to run within the CP JVM made it impossible to use RF and only 8 
communication channels; finally, there was no graceful way to automatically spawn Tracker 
agents to respond to the dynamic addition of targets to the environment.  Further, as the 
Challenge Problem (CP) definition shifted more towards tracking than the real-time aspects of 
resource allocation, it was no longer necessary to integrate with a real-time Linux operating 
system, and the response of our agents needed to be only near-real-time.  Finally, we included 
simple knowledge about the domain of application which made our implementation less general, 
but also more realistic. 
 
The underlying methodology of our approach remains the same under the second architecture, 
and the reader is referred to Section 3 for a description of our theoretical approach. The agents 
examine their environment and based on it they establish behavioral and negotiation parameters.  
The agents are divided into two categories: Radar Agents (RA) and Tracker Agents (TA). A 
Radar Agent controls a sensor, and a Tracker Agent contains the Tracker software.  There is a 
RA for each sensor and a TA for each target.  When the RA has no measurement tasks to carry 
out on behalf of any TA, it searches in all of its sectors to detect targets in round-robin fashion, 
and it sends these measurements to TAs who would be interested in them. We call this mode the 
"Search & Detect" mode, and this mode corresponds to the TA's corresponding mode of 
operation. In this mode, the TA continually checks if the measurements it receives from the RAs 
it is collaborating with have high-enough confidence for the TA to believe there is a target on a 
given sector such that the TA should switch to its tracking mode.  
 
The second mode a Radar Agent works in is called the "Measure" mode, and this mode 
corresponds to the tracking mode of operation of the Tracker Agent. When the TA believes that 
there is a target visible from a sector on a given RA, it asks for measurements from that RA. So, 
as soon as the RA has a specific measurement task to perform, it suspends all searching and 
detecting, and it executes its specific measurement tasks only. Since multiple TAs may ask for 
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measurements from the same sector, the RA keeps track of which TAs have active measure tasks 
to perform on each of its sectors, and uses negotiation-based techniques to switch between these 
requests, trying to balance the use of resources. 
 
Tracker Agents provide RAs with information about targets to allow the RAs to reason about 
which tracking task to schedule, for how long, and how to switch between tracking tasks. 
 
One addition we have made to our methodology is that we have introduced domain-specific 
reasoning in the Tracking Agents.  The TAs use heuristics to evaluate the quality of 
measurements received from the sensors.  Currently, our heuristics integrate the amplitude value 
of a measurement, its support by multiple sensor sectors, and the expected location of a target 
compared to where the measurement says the target is. 
 
We also introduced the dynamic instantiation of tracking agents when a potential new target is 
detected and eventually destroyed when additional measurements cannot be collected to confirm 
that the target remains active in the scenario-defined “room”.  Figure 9 shows our program 
dynamically tracking the two targets from one of the May 2002 CP experiments.  The numbers 
indicate the trackers generated; “b” indicates the beginning of the tracking (when a tracker is 
generated) and “e” the end (when a tracker loses a target and is destroyed).  In figure 9 the agents 
lost the outside target (indicated by 1b-1e) and reacquired it later (3b-3e). 
 

 
Figure 9: Dynamic allocation of trackers to targets; May 2002 CP set-up. 

 
The majority of the work for these extensions were limited to the definition of a new class, 
NodeController, that was able to utilize the core classes, RadarAgent and TrackerAgent, in the 
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initial version of our agent code with only minor changes and extensions.  The NodeController 
class now analyzes Search&Detect measurements from its local RadarAgent and communicates 
with other NodeControllers to determine if a measurement indicates a new target or supports an 
already existing target being tracked.  If it is a new target, the NodeController instantiates a new 
TrackerAgent to begin tracking the target and advertises the new tracker to other 
NodeControllers. 
 
We designed and ran a number of experiments in Radsim, constantly increasing the number of 
sensors and targets.  We have examples of experiments with 3, 5 and 6 targets for which we have 
been able to generate respectable simulation results using up to 20 active nodes.  We have found 
that it becomes very difficult to design experiments with more than 2 or 3 targets that interact 
closely and satisfy the various ANTS constraints.  For example, ensuring that all targets are 
visible to at least three independent radars and that no more than one target appears in the range 
of any radar at the same time, is particularly difficult.  Our visualization tools helped us analyze 
and design multi-target configurations.  Figure 10 shows one of our two largest experiments to 
date.  The tracks of the targets are indicated by the red figure 8’s. 
 

 
 

Figure 10:  Experiment configurations with 6 targets and 18 sensors. 
 
Figure 11 shows tracking of 6 targets by 18 sensors, using dynamic tracker generation. As the 
number of sensors and trackers increases, we experience performance degradation in Radsim and 
the Tracker software that makes the overall system slow down, resulting in worse tracking.  
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Figure 11: Tracking of six targets.  One target was lost and later reacquired (3b-3e, 7b-7e), but most targets are 

tracked continuously. 
 
 
4. Challenge Problem Tools and Studies 
In addition to the major goal of negotiated resource allocation in distributed domains, our group 
was also tasked with some related, parallel work. 
 

4.1. The KU Real Time System for Linux (KURT and RTSS) 
KURT was expanded and greatly enhanced under this contract. Previously KURT existed only 
as a kernel patch, with all KURT routines implemented as system calls.  Adding or modifying 
routines required a recompile of the kernel, which could get tedious, especially because each test 
machine had to be rebooted with the new kernel. Under the contract we ported KURT to a 
loadable Linux kernel module and eliminated the need for kernel recompiles.  Another added 
benefit is that when changes are necessary, the KURT module can be removed, recompiled, and 
reinstalled all without requiring a machine reboot.  All of this made writing real-time scheduling 
routines for ANTs far simpler than had we used the strict kernel patching method. 
 
In order to request system resources, we developed a middleware to the agents and the system. 
This middleware is called RTSS (Real Time Scheduling Services).  This layer takes in requests 
from the agents for system resources. System resources means: 
 
 a. CPU resource 
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 b. Memory Bandwidth 
 c. Network Bandwidth. 
 
Right now the RTSS can guarantee only CPU percentage to the agents.  The RTSS, on request 
from the agent for the CPU, guarantees this percentage of the CPU with the help of KURT. The 
actual usage of the CPU can be obtained by querying the RTSS about the percentage of the CPU 
that agent has actually got. This CPU usage information is obtained by modifying the kernel 
using a macro that gathers information about the registered processes. This helps in reducing the 
overhead of a function call. In order to improve the accuracy of the KURT real-time scheduling, 
several  optimizations were made to UTIME.  UTIME is the microsecond resolution timing  
patch to Linux that KURT relies upon to schedule real-time processes at the  precision of 10’s of 
microseconds.  The optimizations included an improved  calibration routine that more accurately 
calculated several CPU speed-specific values at boot time, reducing the execution time of the 
UTIME  timer interrupt handler routine, and a change to how UTIME calculates and  executes 
Linux jiffy events (a jiffy is a heartbeat in Linux) to better  accommodate future efforts involving 
NTP time-standard clock synchronization.  Support for multiprocessor systems was also added to 
UTIME. 
 
The RTSS also grants users the ability to change real-time schedules on the fly, rather than 
having to wait for the last submitted schedule to complete before the next can be used.  The 
RTSS generates cyclic schedules with periods of 10ms, 20ms, 40ms, or 80ms. This period 
depends upon the total CPU-usage request from all agents on a single machine.  If the total 
request is from 0-10% of the CPU, the schedule will have a period of 10ms.  If the request is 
from 11-20%, the schedule will be 20ms long.  A request from 21-40% generates a 40ms 
schedule and a request from 41-66% (66% is the maximum total percentage request possible) 
generates a schedule of 80ms.  These particular schedule lengths are used in order to correctly 
calculate the actual cpu-usage for each thread of an agent (a thread may request 10%, but may 
only use 5% due to blocking or sleeping).  The CPU-usage calculation code runs every 80ms and 
determines each registered agent thread's actual use of the CPU during the last calculation 
period.  Since the greatest common multiple of each possible cyclic schedule length is 80ms, this 
calculation will be accurate. 
 
There are some cases for agents where requesting a percentage of the CPU for a single thread is 
difficult to determine because that particular thread's progress is dependent upon the progress of 
other threads.  In these cases, requesting a CPU percentage for a group of threads is more 
beneficial.  KURT now provides a group-aware scheduler for this purpose.  When a group 
scheduling timer event occurs, the top-level KURT scheduler determines which group the event 
was for and then calls the group scheduling routine.  This routine examines each thread in the 
group and grants context to the first non-blocked thread.  This is a very basic policy.  We are 
evaluating the use of more complicated group scheduling policies. 

4.2.  The KU KickStart Tools (KUKT) 
The KU KickStart Tools (KUKT, pronounced “cooked”) are extensions to the standard Red 
Hard Kickstart utility that significantly automate Linux system software installation and 
configuration, specifically for support of experimentation.  The existing Red Had utility is 
intended to be interactive with the user as they install software on their Linux system, typically 
from CD.  However, several projects use sets of Linux machines for experimental studies in 
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which reproducibility of the system software and configuration is crucial.  The KUKT extensions 
to Red Hat’s KickStart utility have been designed to automate the installation process, and to 
emphasize reproducibility of system configuration in service of good experimental technique. 
 
The KUKT system is divided into two parts: client and server.  The client portion addresses how 
a client machine can have a specific configuration of Linux installed upon it.  This includes 
utilities to create boot floppies, as well as procedures for supporting remotely controlled 
initiation of system installation.  The server portion is the bulk of the KUKT approach, and 
controls every aspect of system software installation on the target machines. 
 
KUKT assumes that a server machine, the KUKT server, is present on an Ethernet network 
shared with the experimental machines being controlled.  The KUKT approach is based on a 
hardware and software profile for each machine being configured.  The hardware profile 
provides information required to configure the kernel required to support system configuration.  
One of the most important elements of the hardware profile is, for example, the type of Ethernet 
card in the machine so that the client machine being configured can communicate with the 
KUKT server during configuration.  The software profile specifies all software that is installed 
on the machine. This includes all Linux system software, of course, but also all user generated 
software used for the experiment.  
 
The KUKT server provides storage for all profile files required to manage the set of machines 
under its control, as well as for the software whose installation is described by the profiles.  
Several groups of investigators can thus share a set of machines by writing appropriate profiles 
for each machine in their experiment, and by loading the software unique to their experiments on 
the machine.  Changing use of a set of experimental machines from one group to another is then 
as simple as instructing the machines to install the configuration described by the software 
profiles provided by the group taking over use of the machines. 
 
While the KUKT tools already existed for KU internal use, we had to perform a significant 
amount of work to make them ready for more general use.  We have produced client and server 
software that should work in a generic experimental environment, and the documentation 
required by those wishing to set it up.  While one or two refinements may be desired, we believe 
the delivered software is complete, and will require no further development unless users 
encounter problems. 

4.3. Data Streams 
The Data Streams (DS) uses a high resolution timer, the CPU time stamp counter on Intel 
Pentium class processors, to place all events in the system on the same time line.  This enables 
the user to relate events in different processes to each other, and to events at the system level.  
Under the ANTS project we implemented the DS approach in the Linux kernel (DSKI) and with 
user-level interfaces (DSUI) Java.  It provides counters, events, and histograms as native object 
types for data collection purposes.  The Java-DSUI has been designed to be lightweight; it 
should have minimal impact on the programs it monitors, and is suitable for both debugging and 
performance measuring purposes. 
 
The two most fundamental ideas in the data streams approach to performance evaluation are the 
"instrumentation point " and the "data source".  Instrumentation points are placed in the code for 
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which performance information is desired, at places where specific data sources should be 
updated.  The term "data source" is used from the perspective of a process gathering data.  In that 
sense, a data source is thus any separate element provided by the DS from which an interested 
user program can obtain performance information.  A "data stream" refers to the set of data 
gathered by a particular user process from one or more data sources in the course of an 
experiment.  The word "stream" is appropriate here since the data gathered is time-stamped, and 
can thus be placed in a total order.  The data gathering process configures a data stream by 
associating a set of data sources with each data stream as it desires. 
 
Implementing the data streams approach for user level processes we use a specification file to 
describe the set of data sources that should be used during a given experiment and supply the 
name of the specification file to the process during invocation.  In Java we use a specification 
file to describe the name space, and a utility program to generate a Java class specification in a 
given package describing the data source name space of the Java program.  This approach 
reduces the labor of instrumenting Java code to a reasonable level, while providing the 
experimenter with maximum control. New data sources can be defined and used with minimal 
effort, and the exact set of data sources required for an experiment can be specified. 
 
The Java version of the DSUI takes advantage of its object orientation to direct the output of 
each data source to the desired output destination using the generic print method and the existing 
Java output stream facility.  The associated streams can be directed to files, memory buffers, 
devices, etc. 
 
The Java version of the DSUI provides powerful and flexible support for instrumenting 
application code, and for collecting performance evaluation information during experiments.  
Users can create sets of data sources, define the name space of data sources, and use the defined 
name space to control data source use.  Since the DSUI uses the Pentium TSC to gather the time 
stamps, event streams from different sources on the same machine can be merged to represent all 
events on a common time line.  The availability of counters and histograms as well as generic 
events lowers the overhead of gathering certain common types of data.  The Java DSUI has 
passed both static and dynamic tests.  The static tests were performed by ESC/Java 
(<URL:http://research.compaq.com/SRC/esc/>).  The dynamic tests were written and applied in 
an ad hoc manner.  

4.4.  The Communication Server 
The Communication Server is a replacement for the slow RF links.  It is intended to provide a 
simulation of the RF links, but allow the latencies and drop rates to be controlled.  The 
Communication server supports the narrow and wide formats of the RF channels, has message 
logging for debugging and accounting purposes, and supports collision and bandwidth modeling. 
 
The desired bandwidth can be specified on the command line, using the -b option. If no 
bandwidth is specified, the default is 19600 bits per second. When collision modeling is enabled, 
the structure of the message handling is changed in the following manner:  

a. When the client handler thread receives a message from the client, it calculates 
the latency for the message according to the modeled bandwidth. 

b. Once a message is received by the client handler thread, the xmit_start_time field 
of the message structure is assigned the current timestamp value, indicating the 
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start time of the message. The time it would take to transmit the message on the 
modeled channel is calculated to be delay = (message_size * 8 ) / bandwidth. The 
xmit_end_time of the message structure is then assigned the value 
xmit_start_time + delay. 

c. The client handler thread inserts the message in the channel list. Before it stores 
the message in the channel list, it checks for any collisions with existing messages 
on that channel. This is done by comparing the start time of the new message with 
the end times of the existing messages. If the start time is less than the end time of 
any message, both messages are marked as collided. 

d. The output control thread is then signaled, indicating that a new message has been 
put in the channel list. 

e. When the output control checks for messages in the channel list, it checks for 
messages whose xmit_end_time has expired. If such a message is marked as 
collided, it is simply discarded. Otherwise, the message is delivered to the clients 
receiving on the appropriate channel. 

f. Unexpired messages (i.e., those with xmit_end_time in the future), cannot be 
delivered. To avoid wasting CPU cycles, the output control thread sleeps when 
there are no expired messages.  

 
We tested the Communication Server extensively to identify its performance.  We tested, among 
others, message integrity, message ordering, and throughput performance using C-clients, Java 
clients and the CP code.  We also tested the collision model without network delays and then 
with the actual network and identified the delays associated with it.  

4.5. Modifications to the CP Code 
We were charged with discovering the causes of unacceptably high message loss rates when 
using the RF hardware, and with removing or alleviating those causes as possible.  During our 
work we discovered and compensated for several contributing factors. 
 

1. We discovered possible interference between the sending and receiving threads in 
the CP code.  We inserted explicit synchronization between those threads, and saw 
another large drop in message loss rates as a result.  Our analysis shows that a 
running receive thread interferes with the transmission of messages.  Our solution 
causes the receive thread to block while the sending thread transmits. 

 
2. We discovered that a bug in the Linux 2.2 series of kernels affects the message loss 

rate.  This bug, in the serial driver, causes a process using a serial line to be 
suspended for long periods of time, occasionally.  These long suspensions resulted 
in missing some of the bytes of a message, and consequently the entire message had 
to be discarded.  The Linux 2.4 series of kernels do not have this bug, so upgrading 
the kernel is sufficient to improve the message loss rate. For those unable to 
upgrade, we provided a workaround.  This workaround schedules the CP code 
process as a real-time process, which avoids the incorrect behavior.  However, it 
requires that the CP code be executed by a privileged user. 

3. We improved the makefile of the CP code so that it is no longer necessary to do a 
'make configure' before a 'make' when compiling. The makefile determines if a 
'make configure' is required and does it automatically. 
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4. We edited the CP code so that it is no longer necessary to manually comment out or 
uncomment the '#include ' in the file LynxHPDriver.c. The make files and 
LynxHPDriver.c have been modified to automatically  determine if the code is 
being compiled on a LinuxOS or not and then does the right thing. 

5. If the Linux kernel version  is less than or equal to 2.3.0 the LynxHPDriver.c file is 
automatically changed during compilation  (using #ifdefs) to use RoundRobin 
process scheduling during message transmissions to  work around the problem in 
the serial driver that causes the 'tcdrain' function to take too long to return, 
causing  transmission overlaps during the PingPong test. If the kernel version is 
newer than 2.3.0 then message transmissions occur  during 'normal' process 
scheduling since the newer kernels do not have the serial driver problem. 

6. Modified the LynxHP, TCP and UDP communication drivers to set a local  time 
stamp when a message has completed   transmission.  The MTIRadar driver was 
modified to use the message transmission time stamp to determine the minimum   
amount of time to wait before it is safe to start a radar measurement to avoid 
interference from the LynxHP transmitter. This used to be a fixed 50msec wait (CP 
1.4). The wait is now calculated dynamically to be between 0 and 180msec. Tests 
were preformed to determine the minimum amount of time to wait after a LynxRF 
message has finished transmission before it is safe to start a radar measurement.  
This was  determined to be 180mS.  When a radar measurement is requested, the 
MTI radar driver determines the difference between the current time and the last 
message transmission completion time.  If the difference is greater  than 180msec 
the radar measurement starts immediately, otherwise there is a wait of 180msec-
(currentTime - TxFinishTime). 

7. The knowledge of the structure of the 'msgSent' and 'msgReceived' time stamps 
for the control/Message class was spread across the control/ 

MessageQueueServiceThread, control/Message, control/Measurement, 
control/Response and control/UserMessage classes.  This code was moved 
where is should be in the control/Message class. This significantly   improves 
code maintenance if there are any future changes in the control/Message fields. 

8. Added code to automatically detect and warn the user, at run time, if the serial 
cables for the LynxHP or MTIRadar are not connected to the host.  

9. The control/UserMessage class is now a descendent of the runtime/Message 
class.  The consequence of this is that one less class instance is created for each user 
message received and several byte arrays do not have to be created and copied.  
When running on our test machines in native threads there is an increase in message 
rate of the PingPong test from 13.6 msgs/sec to 15.3 msgs/sec.  When running in 
green threads there is no measurable  speed difference. The speed is 12.87 msgs/sec  

 
Altogether, our code improvements have resulted in message loss rates of substantially less than 
1% for all of our systems, regardless of message length, CPU load, or age of the system. 

 
5. Leave-Behinds and Publications 
We delivered the following code modules to DARPA: 

o Agent Code - includes profiler, task manager, negotiation manager, reasoner, etc.  
o Radar Calibration Fix - our code to correct the operational problem (sector switching) of 

the radar calibration code  
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o Case-Based Reasoning code  
o 3D Visualization - 3D real-time visualization and scene input parser  
o Radar Sensor-Sector Target Computation  
o Genetic Algorithm Module for Case Generation  
o CP Performance Enhancements  
o KU Real Time Linux (KURT)  
o KU Kickstart Tools (KUKT)  
o Communication Server 
o Instrumentation Java DSUI, instrumentation tools for Java programs 

 
We produced the following publications as a direct result of the project: 
 

1. Soh, L-K, C. Tsatsoulis, and H. Sevay. 2003. “A Satisficing, Negotiated, and Learning 
Coalition Formation Architecture,” in: Distributed Sensor Networks: A multiagent 
perspective, C. Ortiz, V. Lesser and M. Tambe (Eds.), Kluwer, (to appear). 

2. Soh, L-K. and C. Tsatsoulis. 2002. “Satisficing Coalition Formation among Agents,” 1st 
Int. Conf. On Autonomous Agents and Multiagent Systems, 1062-63. 

3. Soh, L-K. and C. Tsatsoulis. 2002. “Allocation Algorithms in Dynamic Negotiation-
Based Coalition Formation,”  Workshop on Teamwork and Coalition Formation (held 
during the 1st Int. Conf. On Autonomous Agents and Multiagent Systems), 16-23. 

4. Soh, L-K. and C. Tsatsoulis. 2002. “Learning to Form Negotiation Coalitions in a 
Multiagent System,” AAAI Spring Symposium on Collaborative Learning Agents, 106-12. 

5. Soh, L-K. and C. Tsatsoulis. 2001. “Agent-Based Argumentative Negotiations with Case-
Based Reasoning,” AAAI Fall Symposium on Negotiation Methods for Autonomous 
Cooperative Systems, 16-25. 

6. Soh, L-K., C. Tsatsoulis, M. Jones and A. Agah. 2001. “Evolving Cases for Case-Based 
Reasoning Multiagent Negotiations,” in: Proceedings of the Genetic and Evolutionary 
Computation Conference, GECCO-2001, , San Francisco, CA: Morgan Kaufmann 
Publishers, 909. 

7. Soh, L-K. and C. Tsatsoulis. 2001. “Combining Genetic Algorithms and Case-Based 
Reasoning for Genetic Learning of a Casebase: A Conceptual Framework,” in: 
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO-2001, , 
San Francisco, CA: Morgan Kaufmann Publishers, 376-383. 

8. Niehaus, D., C. Tsatsoulis, W. Dinkel, and A. Gautam. 2001.  “An Infrastructure for 
Real-Time, Reflective Intelligent Agents,” Ninth International Workshop on Parallel and 
Distributed Real-Time Systems and Sixth International Workshop on Embedded/ 
Distributed HPC Systems Applications, San Francisco, CA. 

9. Soh, L-K. and C. Tsatsoulis. 2001. “Reflective Negotiating Agents for Real-Time 
Multisensor Target Tracking,” Int. J. Conf. On Artificial Intelligence (IJCAI-01), Seattle, 
WA, 1121-1127. 

10. Dinkel, W., A. Gautan and D. Niehaus. 2000. Comparison of Linux/RK and KURT for 
Use in ANTS, ITTC Technical Report, The University of Kansas. 
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